Crystal structure of KBSi3O8 isostructural with danburite

1993 ◽  
Vol 57 (386) ◽  
pp. 157-164 ◽  
Author(s):  
Mitsuyoshi Kimata

AbstractThe crystal structure of KBSi3O8 (orthorhombic, Pnam, with a = 8.683(1), b = 9.253(1), c = 8.272(1) Å,, V = 664.4(1) Å3, Z = 4) has been determined by the direct method applied to 3- dimensional rcflection data. The structure of a microcrystal with the dimensions 20 × 29 × 37 μm was refined to an unweightcd residual of R = 0.031 using 386 non-zero structure amplitudes. KBSi3O8 adopts a structure essentially different from recdmergneritc NaBSi3O8, with the low albite (NaAlSi3O8) structure, and isotypic with danburite CaB2Si2Os which has the same topology as paracelsian BaAl2Si2O8. The chenfical relationship between this sample and danburitc gives insight into a new coupled substitution; K+ + Si4+ = Ca2+ + B3+ in the extraframework and tetrahedral sites. The present occupancy refinement revealed partial disordering of B and Si atoms which jointly reside in two kinds of general equivalent points, T(1) and T(2) sites. Thus the expanded crystal-chemical formula can be written in the form K(B0.44Si0.56)2(B0.06Si0.94)2O8The systematic trend among crystalline compounds with the M+T3+T4+3O8 formula suggests that they exist in one of four structural types; the feldspar structures with T3+/T4+ ordered and/or disordered forms, and the paracelsian and the hollandite structures.

Author(s):  
Natalia V. Zubkova ◽  
Nikita V. Chukanov ◽  
Christof Schäfer ◽  
Konstantin V. Van ◽  
Igor V. Pekov ◽  
...  

Al analogue of chayesite (with Al > Fe3+) was found in a lamproite from Cancarix, SE Spain. The mineral forms green thick-tabular crystals up to 0.4 mm across in cavities. The empirical formula derived from EMP measurements and calculated on the basis of 17 Mg + Fe + Al + Si apfu is (K0.75 Na0.20 Ca0.11)Mg3.04 Fe0.99 Al1.18 Si11.80 O30. The crystal structure was determined from single crystal X-ray diffraction data ( R = 2.38%). The mineral is hexagonal, space group P 6/ mcc, a = 10.09199(12), c = 14.35079(19) Å, V = 1265.78(3) Å3, Z = 2. Fe is predominantly divalent. Al is mainly distributed between the octahedral A site and the tetrahedral T 2 site. The crystal chemical formula derived from the structure refinement is C (K0.73 Na0.16 Ca0.11)B (Na0.02)4 A(Mg0.42 Al0.29 Fe0.29)2 T 2(Mg0.71 Fe0.16 Al0.13)3 T 1(Si0.985 Al0.015)12 O30.


2020 ◽  
pp. 1-12
Author(s):  
Nadezhda V. Shchipalkina ◽  
Igor V. Pekov ◽  
Nikita V. Chukanov ◽  
Natalia V. Zubkova ◽  
Dmitry I. Belakovskiy ◽  
...  

Abstract The rhodonite-group mineral with the idealised, end-member formula MnMn4[Si5O15] and the crystal chemical formula VIIM(5)MnVIM(1–3)Mn3VIIM(4)Mn[Si5O15] (Roman numerals indicate coordination numbers) is defined as a valid mineral species named vittinkiite after the type locality Vittinki (Vittinge) mines, Isokyrö, Western and Inner Finland Region, Finland. Vittinkiite is an isostructural analogue of rhodonite, ideally CaMn4[Si5O15], with Mn2+ > Ca at the M(5) site. Besides Vittinki, vitiinkiite was found in more than a dozen rhodonite deposits worldwide, however, it is significantly less common in comparison with rhodonite. The mineral typically forms pink to light pink massive, granular aggregates and is associated with quartz, rhodonite, tephroite, pyroxmangite and Mn oxides. Vittinkiite is optically biaxial (+), with α = 1.725(4), β = 1.733(4), γ = 1.745(5) and 2Vmeas = 75(10)° (589 nm). The chemical composition of the holotype (wt.%, electron microprobe) is: MgO 0.52, CaO, 0.93, MnO 51.82, FeO 1.26, ZnO 0.11, SiO2 46.48, total 101.12. The empirical formula calculated based on 15 O apfu is Mn4.71Ca0.11Fe0.11Mg0.08Zn0.01Si4.99O15. Vittinkiite is triclinic, space group P $\bar{1}$ , with a = 6.6980(3), b = 7.6203(3), c = 11.8473(5) Å, α = 105.663(3), β = 92.400(3), γ = 94.309(3)°, V = 579.38(7) Å3 and Z = 2. The crystal structure is solved on a single crystal to R1 = 3.85%. Polymorphism of MnSiO3 (rhodonite-, pyroxmangite-, garnet- and clinopyroxene-type manganese metasilicates) is discussed, as well as the relationship between vittinkiite and pyroxmangite, ideally Mn7[Si7O21], and the application of infrared spectroscopy for the identification of manganese pyroxenoids.


2014 ◽  
Vol 78 (4) ◽  
pp. 871-888
Author(s):  
L. Bindi ◽  
C. Biagioni ◽  
L. Ceccantini ◽  
M. Batoni ◽  
S. Menchetti

AbstractThe crystal structure of the mineral coquandite, a rare Sb oxy-sulfate hydrate, was solved using intensity data collected from a crystal from the Cetine mine, Tuscany, Italy. This study revealed that the structure is triclinic, space group P, with a = 11.4292(5), b = 29.772(1), c = 11.2989(5) Å, α = 91.152(3), β = 119.266(4), γ = 92.624(3)° and V = 3346.4(2) Å3. The refinement of an anisotropic model led to an R index of 0.0347 for 21,061 independent reflections. Thirty-two Sb sites, five S sites and 67 oxygen sites occur in the crystal structure of coquandite. Sb atoms display the characteristic SbO3E and SbO4E coordinations whereas S fills (SO4) tetrahedral groups. These atoms are arranged in five symmetry-independent layers perpendicular to b*. Four of them and their centrosymmetrical counterparts form complex modules stacked along b* and bonded through two Sb atoms and H bonds. The complex H bonding system in the structure is discussed. On the basis of information gained from this characterization, the crystal-chemical formula was revised according to the structural results, yielding Sb6+xO8+x(SO4)(OH)x·(H2O)1–x (Z = 10) with x = 0.3 instead of Sb6O8(SO4)·H2O (Z = 12) as reported previously. A recalculation of the chemical data listed in the scientific literature for coquandite according to the structural results obtained here leads to a satisfactory agreement.


2018 ◽  
Vol 233 (7) ◽  
pp. 463-468 ◽  
Author(s):  
Natalia V. Zubkova ◽  
Nikita V. Chukanov ◽  
Igor V. Pekov ◽  
Bernd Ternes ◽  
Willi Schüller ◽  
...  

Abstract The crystal structure of a Nb-rich zirconolite-3T from the Laach Lake volcano, Eifel, Germany, was studied by single-crystal XRD (R=0.0295). The mineral is trigonal, P3121; unit-cell dimensions are: a=7.3095(2), c=16.9604(5) Å, V=784.78(4) Å3. The empirical formula based on 14 O atoms (Z=3) is Ca1.28Ce0.31La0.14Nd0.12Pr0.06Th0.16 Zr1.94Hf0.04Ti1.74Nb1.22Fe0.72Mn0.28O14. The crystal-chemical formula based upon the structural model is: VIII(Ca0.70 Ce0.30)VIII(Ca0.58Ce0.32Th0.10)VII(Zr0.88Th0.04Hf0.02□0.06)2VII(□0.94 Zr0.06)2VI(Ti0.72Nb0.26Zr0.02)VI(Ti0.50Nb0.47Zr0.03)2IV(Fe0.355 Mn0.145)2O14 (Z=3).


2012 ◽  
Vol 76 (3) ◽  
pp. 725-741 ◽  
Author(s):  
N. V. Chukanov ◽  
R. Scholz ◽  
S. M. Aksenov ◽  
R. K. Rastsvetaeva ◽  
I. V. Pekov ◽  
...  

AbstractThe composition, structure, X-ray powder diffraction pattern, optical properties, density, infrared, Raman and Mössbauer spectra, and thermal properties of a homogeneous sample of metavivianite from the Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil are reported for the first time. Metavivianite is biaxial (+) with α = 1.600(3), β = 1.640(3), γ = 1.685(3) and 2Vmeas= 85(5)°. The measured and calculated densities are Dmeas= 2.56(2) and Dcalc= 2.579 g cm–3. The chemical composition, based on electronmicroprobe analyses, Mössbauer spectroscopy (to determine the Fe2+:Fe3+ratio) and gas chromatography (to determine H2O) is MgO 0.70, MnO 0.92, FeO 17.98, Fe2O326.60, P2O528.62, H2O 26.5; total 101.32 wt.%. The empirical formula is (Fe3+1.64Fe2+1.23Mg0.085Mn0.06)Σ3.015(PO4)1.98(OH)1.72·6.36H2O. Metavivianite is triclinic, P1̄, a = 7.989(1), b = 9.321(2), c = 4.629(1) Å, α = 97.34(1), β = 95.96(1), γ = 108.59(2)°, V = 320.18(11) Å3and Z = 1. The crystal structure was solved using a single-crystal techniques to an agreement index R = 6.0%. The dominant cations in the independent sites are Fe2+and Fe3+, with multiplicities of 1 and 2, respectively. The simplified crystal-chemical formula for metavivianite is Fe2+(Fe3+, Fe2+)2(PO4)2(OH,H2O)2·6H2O; the endmember formula is Fe2+Fe3+2(PO4)2(OH)2·6H2O, which is dimorphous with ferrostrunzite.


2004 ◽  
Vol 89 (11-12) ◽  
pp. 1763-1771 ◽  
Author(s):  
Giovanni B. Andreozzi ◽  
Sergio Lucchesi ◽  
Giorgio Graziani ◽  
Umberto Russo

Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Rafał Juroszek ◽  
Biljana Krüger ◽  
Irina Galuskina ◽  
Hannes Krüger ◽  
Martina Tribus ◽  
...  

The crystal structure of bentorite, ideally Ca6Cr2(SO4)3(OH)12·26H2O, a Cr3+ analogue of ettringite, is for the first time investigated using X-ray single crystal diffraction. Bentorite crystals of suitable quality were found in the Arad Stone Quarry within the pyrometamorphic rock of the Hatrurim Complex (Mottled Zone). The preliminary semi-quantitative data on the bentorite composition obtained by SEM-EDS show that the average Cr/(Cr + Al) ratio of this sample is >0.8. Bentorite crystallizes in space group P31c, with a = b = 11.1927(5) Å, c =21.7121(10) Å, V = 2355.60(18) Å3, and Z = 2. The crystal structure is refined, including the hydrogen atom positions, to an agreement index R1 = 3.88%. The bentorite crystal chemical formula is Ca6(Cr1.613Al0.387)Σ2[(SO4)2.750(CO3)0.499]Σ3.249(OH)11.502·~25.75H2O. The Raman spectra of bentorite from two different localities exhibit the presence of the main stretching and bending vibrations related to the sulfate group at 983 cm−1 (ν1), 1109 cm−1 (ν3), 442 cm−1 (ν2), and 601 cm−1 (ν4). Moreover, the presence of bands assigned to the symmetric Cr(OH)63− stretching mode and hydroxyl deformation vibrations of Cr–OH units at ~540 cm−1 and ~757 cm−1, respectively, may be used to distinguish between ettringite and bentorite. In situ high temperature single crystal XRD experiments show that the decomposition of bentorite starts at ca. 45 °C and that a dehydroxylation product similar to metaettringite is formed.


2013 ◽  
Vol 77 (4) ◽  
pp. 475-483 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
D. Belmonte ◽  
R. Cabella ◽  
R. Bracco

AbstractWeissite, Cu2–xTe (x ≈ 0.21), a very rare copper telluride, occurs in a sample from the Gambatesa mine, Val Graveglia, Liguria, Italy, where it occurs as purplish black anhedral grains up to 0.1 mm in length and shows a black streak. No cleavage is observed and the Vickers hardness (VHN100) is 142 kg/mm2. Weissite is dark bluish black, weakly pleochroic, and moderately anisotropic in bluish tints. Reflectance percentages in air for Rmin and Rmax are 37.0, 38.4 (471.1 nm), 33.2, 34.2 (548.3 nm), 31.2, 32.1 (586.6 nm), and 28.6, 31.0 (652.3 nm), respectively.Weissite is trigonal and belongs to the space group P3m1 with the following unit-cell parameters: a = 8.3124(7) Å, c = 21.546(1) Å, V = 1289.3(2) Å3, and Z = 24. Electron microprobe analyses gave the chemical formula (Cu1.62Ag0.04Au0.04Fe0.04Sb0.04)Σ=1.78(Te0.96S0.02Se0.02). The crystal structure has been solved and refined to R = 1.95%. It consists of Cu and Te polyhedra forming complex crystal-chemical environments as is typical of many intermetallic compounds. The exceedingly short bond distances observed among the metals are discussed in relation to other copper tellurides and pure metals.


2016 ◽  
Author(s):  
L. B. Mccusker ◽  
F. Liebau ◽  
G. Engelhardt

2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Maria Lacalamita ◽  
Emanuela Schingaro ◽  
Ernesto Mesto ◽  
Federica Zaccarini ◽  
Cristian Biagioni

AbstractThe present work reports the crystal-chemical characterization of micas from the Monte Arsiccio and Buca della Vena mines (Apuan Alps, Italy) through electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy. The sample from the Monte Arsiccio mine can be classified as an intermediate member of the yangzhumingite-fluorophlogopite series, with average crystal-chemical formula (K0.85Na0.01Ba0.09)Σ=0.95(Mg2.11Fe2+0.23Fe3+0.11Cr3+0.01Al0.20Ti0.04☐0.30)Σ=3.00(Si3.20Al0.80)Σ=4.00O10.00F1.90Cl0.02(OH)0.08. Unit-cell parameters are a ~ 5.30, b ~ 9.18, c ~ 10.14 Å, β ~ 100.12°, V ~ 486.22 Å3, corresponding to the 1M polytype. Structure refinements, performed in C2/m space group, converged to R1 = 3.54 and 4.46% and provided Mg plus Fe occupancy in the range 86–94% for the octahedral M1 and M2 sites. Raman spectroscopy shows very weak bands in the OH stretching region at ~ 3690 and 3580 cm−1. The sample from the Buca della Vena mine has been identified as an (OH)-rich fluorophlogopite, with average crystal-chemical formula (K0.84Na0.02Ca0.01)Σ=0.87(Mg2.12Fe2+0.55Fe3+0.10Al0.18☐0.05)Σ=3.00(Si2.99Al1.01)Σ=4.00O10.00F1.02Cl0.09(OH)0.89. Its unit-cell parameters are a ~ 5.33, b ~ 9.22, c ~ 10.23 Å, β ~ 100.09°, V ~ 494.39 Å3. Structure refinements gave good R1 values (3.27 and 4.37%) and revealed octahedral occupancy of 82–84% Mg and 16–18% Fe. Strong Raman signals at ~ 3702 cm−1 and 3595 cm−1 were observed in the OH stretching region. The findings allow to better understand not only the mineralogy of the Apuan Alps but, more generally, the crystal chemical details of intermediate dioctahedral-trioctahedral mica belonging to the yanzhumingite-fluorophlogopite series.


Sign in / Sign up

Export Citation Format

Share Document