Effect of hot isostatic pressing on the structure and properties of cast polycrystalline gas-turbine blades made of nickel superalloys

2012 ◽  
Vol 2012 (5) ◽  
pp. 396-403 ◽  
Author(s):  
A. G. Beresnev
1980 ◽  
Author(s):  
J. Liburdi ◽  
J. O. Stephens

This paper presents the effects of deterioration of gas turbine blade life with prolonged service exposure. This deterioration is primarily due to internal microstructural changes and the formation of creep voids or cavitation. Methods of evaluating residual blade life or life trend curves are presented along with a documentation of the creep damage observed. The extension of blade life by Hot isostatic pressing versus reheat treatment is discussed and data is presented to show that complete recovery of properties can be achieved even after the material has suffered extensive internal creep damage. As a result, the time between overhauls for blades can be significantly extended, and the need for replacement blades can be minimized.


1996 ◽  
Vol 78 (1-3) ◽  
pp. 113-123 ◽  
Author(s):  
A.A. Tchizhik ◽  
A.I. Rybnikov ◽  
I.S. Malashenko ◽  
S.A. Leontiev ◽  
A.S. Osyka

2007 ◽  
Vol 26-28 ◽  
pp. 209-212
Author(s):  
Moon Young Kim ◽  
Sung Ho Yang ◽  
Kuk Hyun Song

This work was studied for the changes of thermal properties on GTD-111 DS (Directional Solidification) gas turbine blade. In this study, gas turbine blades with 24,000~34,000 firing hours was used to get more effective result, gradually applied hot isostatic pressing (HIP) and post-heat treatment for these samples. In the latter steps, we observed changes of γ´ phase affected in material properties, and microhardness test was carried out to evaluate mechanical properties according to changes of γ´ fraction and shape. Experimental result shows, changes of γ´ fraction and shape were affected by HIP and post-heat treatment. And also mechanical properties changes such as micro-hardness related to γ´ phase. In this study, we explained changing transition of microstructure according to γ´ fraction distribution.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document