Effect of the Nonuniform Distribution of the Mechanical Properties of Rolled Sheets on the Shape of a Round Billet after Forming in Making Large-Diameter Pipes

2020 ◽  
Vol 2020 (5) ◽  
pp. 589-596
Author(s):  
M. A. Tovmasyan ◽  
S. V. Samusev
Author(s):  
Stelios Kyriakides ◽  
Mark D. Herynk ◽  
Heedo Yun

Large-diameter pipes used in offshore applications are commonly manufactured by cold-forming plates through the UOE process. Collapse experiments have demonstrated that these steps, especially the final expansion, degrade the mechanical properties of the pipe and result in a reduction in its collapse pressure, upwards of 30%. In this study, the UOE forming process has been modeled numerically so that the effects of press parameters of each forming step on the final geometry and mechanical properties of the pipe can be established. The final step involves simulation of pipe collapse under external pressure. An extensive parametric study of the problem has been conducted, through which ways of optimizing the process for improved collapse performance have been established. For example, it was found that optimum collapse pressure requires a tradeoff between pipe shape (ovality) and material degradation. Generally, increase in the O-strain and decrease in the expansion strain improve the collapse pressure. Substituting the expansion by compression can not only alleviate the UOE collapse pressure degradation but can result in a significant increase in collapse performance.


2013 ◽  
Vol 2013 (5) ◽  
pp. 336-343 ◽  
Author(s):  
V. A. Khotinov ◽  
A. B. Arabei ◽  
I. Yu. Pyshmintsev ◽  
V. M. Farber

Author(s):  
Franz Martin Knoop ◽  
Volker Flaxa ◽  
Steffen Zimmermann ◽  
Johannes Groß-Weege

The paper discusses the development and processing of hot rolled X80 coil material and its conversion into thick-walled helical seam welded pipes. Microstructure, texture and mechanical properties of strips and pipes produced are characterized and compared. High strength characteristics and good deformability as a result of the fine homogenous mainly bainitic microstructure have been determined. Stress strain characteristics and the response to cold deformation during pipe forming have been investigated. Correlations between strip and pipe properties are described and have been used as a data basis for FEM simulations of the pipe forming process. The real pipe behavior has been investigated by means of burst tests performed on 48″ and 42″ pipe sections with 18.9mm wall thickness. The results achieved have been compared with results for other pipe grades, dimensions and types of pipe. An outlook will be given on future material and process development steps and use of X80 HSAW-pipes produced.


1978 ◽  
Vol 10 (1) ◽  
pp. 29-34 ◽  
Author(s):  
V. V. Chelyshev ◽  
V. G. Burdukovskii ◽  
B. N. Gubashov ◽  
V. V. Kirichenko

Metallurgist ◽  
1987 ◽  
Vol 31 (10) ◽  
pp. 320-321
Author(s):  
V. M. Ryabov ◽  
L. A. Usova

Author(s):  
Changshuai Shi ◽  
Kailin Chen ◽  
Xiaohua Zhu ◽  
Feilong Cheng ◽  
Yuekui Qi ◽  
...  

Abstract The large-diameter solid expandable tubular with a smaller wall thickness faces the risk of internal pressure burst and external squeeze collapse in repairing damaged casing well. The internal pressure and external squeezing resistance calculation of the tubes using the analytical method require many expansion experiments and post-expansion tensile experiments, resulting in high costs and low efficiency. This paper gives a set of laboratory expansion and post-expansion performance test, which is based on the laboratory experiment and mechanical properties of material expansion. Two materials are studied: 316L and 20G. Then it analyses the error and causes of the error in the traditional analytical algorithm. Besides, it establishes an accurate finite element (FE) model to study the quantitative influence of expansion ratio and wall thickness on the burst strengths and collapse strengths of the tube. The results show that the toughness and hardening ratio of 316L is better than 20G at the same expansion ratio. The numerical simulation results of the model can effectively simulate the expansion process and the mechanical properties of SET in good agreement with the laboratory test results. The expansion ratio and wall thickness affect the mechanical properties after expansion. Thus the quantitative laws of the expansion driving force, internal pressure resistance, and external squeezing resistance under different variables are summarized. To ensure the integrity of the reinforced wellbore, the expansion ratio should not exceed 12.7%. In the current study lays a theoretical basis and technical support for optimizing SET and preventing downhole accidents.


Sign in / Sign up

Export Citation Format

Share Document