Spatiotemporal Relationships of the Groove Belts, Coronal Structures, and Rift Zones of Venus

2019 ◽  
Vol 53 (6) ◽  
pp. 411-422 ◽  
Author(s):  
E. N. Guseva ◽  
M. A. Ivanov
1994 ◽  
Vol 144 ◽  
pp. 597-599 ◽  
Author(s):  
I. V. Alexeyeva ◽  
N. L. Kroussanova ◽  
M. V. Streltsova

AbstractThe results of photometry of colour positives of the solar corona of July 11, 1991 are presented. Observations of the white corona were made without radial niters in Jojutla (Mexico). Dependences of coronal brightness on distance in the red (640 nm) and blue (420 nm) wavelength intervals are deduced for different coronal structures up to 3.0-3.5R⊙. The effect of ”reddening“ is noted. The excess of the red emission to the blue one (I640nm/I420nm) is found to be 1.20 and 1.17 at distance of 2.2R⊙for the N-E helmet streamer (P ≃ 37°) and the N-W region of low brightness (P ≃ 339°), respectively.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 517-521
Author(s):  
Z. Mouradian ◽  
G. Buchholtz ◽  
G. Zlicaric

AbstractThe synoptic charts of solar rotations 1831 and 1844 have been drawn up, corresponding to the eclipses of 22 July 1990 and 11 July 1991. These charts contain the active regions and the filaments, and show the position of the solar limb, at the time of the eclipse. They are for use in studying the coronal structures observed during these eclipses. The variation of these structures is given in the table. The last section of the article contains a formula for identifying the structures out of the limb.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


2000 ◽  
Vol 179 ◽  
pp. 197-200
Author(s):  
Milan Minarovjech ◽  
Milan Rybanský ◽  
Vojtech Rušin

AbstractWe present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of white-light coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.


Author(s):  
Robert S. White ◽  
Marie Edmonds ◽  
John Maclennan ◽  
Tim Greenfield ◽  
Thorbjorg Agustsdottir

We use both seismology and geobarometry to investigate the movement of melt through the volcanic crust of Iceland. We have captured melt in the act of moving within or through a series of sills ranging from the upper mantle to the shallow crust by the clusters of small earthquakes it produces as it forces its way upward. The melt is injected not just beneath the central volcanoes, but also at discrete locations along the rift zones and above the centre of the underlying mantle plume. We suggest that the high strain rates required to produce seismicity at depths of 10–25 km in a normally ductile part of the Icelandic crust are linked to the exsolution of carbon dioxide from the basaltic melts. The seismicity and geobarometry provide complementary information on the way that the melt moves through the crust, stalling and fractionating, and often freezing in one or more melt lenses on its way upwards: the seismicity shows what is happening instantaneously today, while the geobarometry gives constraints averaged over longer time scales on the depths of residence in the crust of melts prior to their eruption. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics'.


1980 ◽  
Vol 1 ◽  
pp. 55-55
Author(s):  
Sion Shabtaie ◽  
Charles R. Bentley

Recent geophysical and glaciological investigations of the Ross Ice Shelf have revealed many complexities in the ice shelf that can be important factors in iceberg structure. The presence of rift zones, surface and bottom crevasses, corrugations, ridges and troughs, and other features could substantially modify the hydraulics of iceberg towing and lead to disintegration of the berg in the course of transport.The relationships between the elevation above sea-level and total ice thickness for three ice shelves (Ross, Brunt, and McMurdo) are given; from them, expressions for the thickness/freeboard ratios of tabular icebergs calved from these ice shelves are obtained. The relationships obtained from the measured values of surface elevation and ice thickness are in agreement with models derived assuming hydrostatic equilibrium.Areas of brine infiltration into the Ross Ice Shelf have been mapped. Examples of radar profiles in these zones are shown. Absorption from the brine layers results in a poor or absent bottom echo. It is probable that little saline ice exists at the bottom of the Ross Ice Shelf front due to a rapid bottom melting near the ice front, and that the thickness of the saline ice at the bottom of icebergs calving from the Ross Ice Shelf is no more than a few meters, if there is any at all.We have observed many rift zones on the ice shelf by airborne radar techniques, and at one site the bottom and surface topographies of (buried) rift zones have been delineated. These rift zones play an obvious role in iceberg formation and may also affect the dynamics of iceberg transport. Bottom crevasses with different shapes, sizes, and spacings are abundant in ice shelves; probably some are filled with saline ice and others with unfrozen sea-water. Existence of these bottom crevasses could lead to a rapid disintegration of icebergs in the course of transport, as well as increasing the frictional drag at the ice-water boundary.Radar profiles of the ice-shelf barrier at four sites in flow bands of very different characteristics are shown. In some places rifting upstream from the barrier shows regular spacings, suggesting a periodic calving. Differential bottom melting near the barrier causes the icebergs to have an uneven surface and bottom (i.e. dome-shaped).Electrical resistivity soundings on the ice shelf can be applied to estimate the temperature-depth function, and from that the basal mass-balance rate. With some modifications, the technique may also be applied to estimating the basal mass-balance rates of tabular icebergs.


Sign in / Sign up

Export Citation Format

Share Document