Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model

2016 ◽  
Vol 50 (6) ◽  
pp. 975-989 ◽  
Author(s):  
S. D. Svetlov ◽  
R. Sh. Abiev
1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


Author(s):  
Bahman Aboulhasanzadeh ◽  
Siju Thomas ◽  
Jiacai Lu ◽  
Gretar Tryggvason

In direct numerical simulations (DNS) of multiphase flows it is frequently found that features much smaller than the “dominant” flow scales emerge. Those features consist of thin films, filaments, drops, and boundary layers, and usually surface tension is strong so the geometry is simple. Inertia effects are also small so the flow is simple and often there is a clear separation of scales between those features and the rest of the flow. Thus it is often possible to describe the evolution of this flow by analytical models. Here we discuss two examples of the use of analytical models to account for small-scale features in DNS of multiphase flows. For the flow in the film beneath a drop sliding down a sloping wall we capture the evolution of films that are too thin to be accurately resolved using a grid that is sufficient for the rest of the flow by a thin film model. The other example is the mass transfer from a gas bubbly rising in a liquid. Since diffusion of mass is much slower than the diffusion of momentum, the mass transfer boundary layer is very thin and can be captured by a simple boundary layer model.


Sign in / Sign up

Export Citation Format

Share Document