Grey Water Footprint Assessment from the Perspective of Water Pollution Sources: A Case Study of China

2019 ◽  
Vol 46 (3) ◽  
pp. 454-465 ◽  
Author(s):  
Xionghe Qin ◽  
Caizhi Sun ◽  
Qin Han ◽  
Wei Zou
2020 ◽  
Vol 15 (10) ◽  
pp. 104020
Author(s):  
Libor Ansorge ◽  
Lada Stejskalová ◽  
Jiří Dlabal

2017 ◽  
Vol 9 (5) ◽  
pp. 799 ◽  
Author(s):  
Pier Miglietta ◽  
Pierluigi Toma ◽  
Francesco Fanizzi ◽  
Antonella De Donno ◽  
Benedetta Coluccia ◽  
...  

2018 ◽  
Vol 22 (6) ◽  
pp. 3245-3259 ◽  
Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha−1), nitrogen form (inorganic N or manure N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the N-related grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the 20-year period 1993–2012. The water and nitrogen balances of the soil and plant growth at the field scale were simulated with the Agricultural Policy Environmental eXtender (APEX) model. As a reference management package, we assume the use of inorganic N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha−1 (with crop yield of 11.1 t ha−1) is 1100 m3 t−1, which can be reduced by 91 % towards 95 m3 t−1 when the N application rate is reduced to 50 kg N ha−1 (with a yield of 3.7 t ha−1). The grey WF can be further reduced to 75 m3 t−1 by shifting the management package to manure N and deficit irrigation (with crop yield of 3.5 t ha−1). Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue and grey) WF per tonne is found to be minimal at an N application rate of 150 kg N ha−1, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha−1). The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16 % loss in yield.


Author(s):  
Natalia Mikosch ◽  
Markus Berger ◽  
Matthias Finkbeiner

Abstract Purpose In contrast to water consumption, water pollution has gained less attention in water footprinting so far. Unlike water scarcity impact assessment, on which a consensus has recently been achieved, there is no agreement on how to address water quality deterioration in water footprinting. This paper provides an overview of existing water footprint methods to calculate impacts associated with water pollution and discusses their strengths and limitations using an illustrative example. Methods The methods are described and applied to a case study for the wastewater generated in textile processing. The results for two scenarios with different water quality parameters are evaluated against each other and the water scarcity footprint (WSF). Finally, methodological aspects, strengths and limitations of each method are analysed and discussed and recommendations for the methods application are provided. Results and discussion Two general impact assessment approaches exist to address water quality in water footprinting: the Water Degradation Footprint (WDF) calculates the impacts associated with the propagation of released pollutants in the environment and their uptake by the population and ecosystem, while the Water Availability Footprint (WAF) quantifies the impacts related to the water deprivation, when polluted water cannot be used. Overall, seven methods to consider water quality in water footprinting were identified, which rely upon one or a combination of WDF, WAF and WSF. Methodological scopes significantly vary regarding the inventory requirements and provided results (a single-score or several impact categories). The case study demonstrated that the methods provide conflicting results concerning which scenario is less harmful with regard to the water pollution. Conclusions This paper provides a review of the water pollution assessment methods in water footprinting and analyses their modelling choices and resulting effects on the WF. With regard to the identified inconsistencies, we reveal the urgent need for a guidance for the methods application to provide robust results and allow a consistent evaluation of the water quality in water footprinting.


Author(s):  
Cheerawit Rattanapan ◽  
◽  
Weerawat Ounsaneha

The aim of this research was to assess the water footprint level of Thai banana production. Firstly, the water consumption inventory of banana production was developed. The water consumptions in the banana farms and a case study of banana industry were collected based on the inventory. The results showed that the water consumption of banana plantation was 842.02 m3 including 443.50 m3 of green water, 398.52 m3 of blue water and not found grey water. Moreover, 1638.59 m3/rai was found in the one rai of banana plantation consisted of 863.06 m3/rai of green water and 775.53 m3/rai of blue water. From the finding of this study, the reduction approach of water footprint for banana production should be the reduction of watering the plant in the process of banana growing.


2017 ◽  
Vol 161 ◽  
pp. 1064-1073 ◽  
Author(s):  
Hui Li ◽  
Zhifeng Yang ◽  
Gengyuan Liu ◽  
Marco Casazza ◽  
Xinan Yin

2017 ◽  
Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha−1), nitrogen form (inorganic-N or manure-N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the twenty-years period 1993–2012. The water and nitrogen balances of the soil and plant growth at field scale were simulated with the APEX model. As a reference management package, we assume the use of inorganic-N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha−1 (with crop yield of 11.1 t ha−1) is 1100 m3 t−1, which can be reduced by 91 % towards 95 m3 t−1 when the N application rate is reduced to 50 kg N ha−1 (with a yield of 3.7 t ha−1). The grey WF can be further reduced to 75 m3 t−1 by shifting the management package to manure-N and deficit irrigation (with crop yield of 3.5 t ha−1). Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue plus grey) WF per tonne is found to be minimal at an N application rate of 150 kg N ha−1, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha−1). The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic-N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16 % loss in yield.


Sign in / Sign up

Export Citation Format

Share Document