scholarly journals Grey water footprint reduction in irrigated crop production: effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy

Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha−1), nitrogen form (inorganic-N or manure-N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the twenty-years period 1993–2012. The water and nitrogen balances of the soil and plant growth at field scale were simulated with the APEX model. As a reference management package, we assume the use of inorganic-N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha−1 (with crop yield of 11.1 t ha−1) is 1100 m3 t−1, which can be reduced by 91 % towards 95 m3 t−1 when the N application rate is reduced to 50 kg N ha−1 (with a yield of 3.7 t ha−1). The grey WF can be further reduced to 75 m3 t−1 by shifting the management package to manure-N and deficit irrigation (with crop yield of 3.5 t ha−1). Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue plus grey) WF per tonne is found to be minimal at an N application rate of 150 kg N ha−1, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha−1). The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic-N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16 % loss in yield.

2018 ◽  
Vol 22 (6) ◽  
pp. 3245-3259 ◽  
Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha−1), nitrogen form (inorganic N or manure N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the N-related grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the 20-year period 1993–2012. The water and nitrogen balances of the soil and plant growth at the field scale were simulated with the Agricultural Policy Environmental eXtender (APEX) model. As a reference management package, we assume the use of inorganic N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha−1 (with crop yield of 11.1 t ha−1) is 1100 m3 t−1, which can be reduced by 91 % towards 95 m3 t−1 when the N application rate is reduced to 50 kg N ha−1 (with a yield of 3.7 t ha−1). The grey WF can be further reduced to 75 m3 t−1 by shifting the management package to manure N and deficit irrigation (with crop yield of 3.5 t ha−1). Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue and grey) WF per tonne is found to be minimal at an N application rate of 150 kg N ha−1, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha−1). The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16 % loss in yield.


2018 ◽  
Vol 210 ◽  
pp. 330-339 ◽  
Author(s):  
Wenli Qin ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Liwei Shao

2011 ◽  
Vol 8 (1) ◽  
pp. 763-809 ◽  
Author(s):  
M. M. Mekonnen ◽  
A. Y. Hoekstra

Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1), vegetables (300 m3 ton−1), roots and tubers (400 m3 ton−1), fruits (1000 m3 ton−1), cereals} (1600 m3 ton−1), oil crops (2400 m3 ton−1) to pulses (4000 m3 ton−1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ−1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ−1, while this is 121 m3 GJ−1 for maize. The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr−1), rice (992 Gm3 yr−1) and maize (770 Gm3 yr−1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr−1), China (967 Gm3 yr−1) and the USA (826 Gm3 yr−1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr−1) and the Ganges River Basin (108 Gm3 yr−1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr−1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr−1 (48% green, 40% blue, 12% grey).


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


2017 ◽  
Vol 169 ◽  
pp. 118-123 ◽  
Author(s):  
Veronica Muñoz-Romero ◽  
Rafael J. Lopez-Bellido ◽  
Purificacion Fernandez-Garcia ◽  
Ramon Redondo ◽  
Sergio Murillo ◽  
...  

2012 ◽  
Vol 151 (3) ◽  
pp. 347-367 ◽  
Author(s):  
J. P. LYNCH ◽  
P. O'KIELY ◽  
E. M. DOYLE

SUMMARYThe objectives of the present study were to determine the effects of nitrogen (N) application rate, harvest date and maize cultivar on the yield, quality and the subsequent conservation characteristics of whole-crop, cob and stover silages. The experiment was organized in a spilt-plot design, with harvest date (15 September, 6 October and 27 October) as the main plot, and a three (maize cultivars: Tassilo, Andante and KXA 7211)×two (N application rate: 33 and 168 kg N/ha) factorial arrangement of treatments as the sub-plot, within three replicate blocks, and was conducted at Grange, Dunsany, Co. Meath, Ireland in 2009. The three harvest dates represented early, normal and late harvests, respectively, for a midland site in Ireland. Of the three maize cultivars selected, cvars Tassilo and Andante represent conventional cultivars sown by commercial livestock farmers in Ireland, while cvar KXA 7211 is categorized as a high biomass cultivar. No effect of N application rate was observed on the dry matter (DM) yield, nutritive value or ensiling characteristics of maize whole-crop or cob. Whole-crop and stover harvested on the later date had a lower digestible DM (DDM) content and the silages underwent a more restricted fermentation, compared to silages produced from herbage harvested on earlier dates. Cob silages produced from crops harvested on 15 September had lower DDM content and higher DM loss during ensiling than later harvest dates. Despite higher whole-crop DM yields, the later maturing cultivar KXA 7211 did not improve the DM yields of cob and also resulted in increased DM losses from the ensilage of cob, when compared with the other cultivars. In addition to the DM yield and nutritive value of forage maize at harvest, the subsequent fermentation profile during ensilage influences the optimum choice of cultivar and date for crop harvest in a maize silage production system.


Sign in / Sign up

Export Citation Format

Share Document