Computational Implementation of a Mixed-Dimensional Model of Heat Transfer in the Soil–Pipe System in Cryolithic Zone

2021 ◽  
Vol 61 (12) ◽  
pp. 2054-2067
Author(s):  
V. I. Vasil’ev ◽  
M. V. Vasil’eva ◽  
D. Ya. Nikiforov ◽  
N. I. Sidnyaev ◽  
S. P. Stepanov ◽  
...  
AIChE Journal ◽  
2011 ◽  
Vol 58 (8) ◽  
pp. 2545-2556 ◽  
Author(s):  
Cyril Caliot ◽  
Gilles Flamant ◽  
Giorgos Patrianakos ◽  
Margaritis Kostoglou ◽  
Athanasios G. Konstandopoulos

Author(s):  
Mohammad Mamunur Rahman ◽  
Manabendra Saha ◽  
Muhammad Mostafa Kamal Bhuiya ◽  
Auvi Biswas ◽  
Md. Hasibul Alam ◽  
...  

1989 ◽  
Vol 202 ◽  
pp. 83-96 ◽  
Author(s):  
C. Nicoli ◽  
P. Pelcé

We develop a simple model in which longitudinal, compressible, unsteady heat transfer between heater and gas is computed in the small-Mach-number limit. This calculation is used to determine the transfer function of the heater, which plays an important role in the stability limits of the thermoacoustic instability of the Rijke tube. The transfer function is determined analytically in the limit of small expansion parameter γ, and numerically for γ of order unity. In the case ρμ/cp = constant, an analytical solution can be found.


Author(s):  
Mo Yang ◽  
Jin Wang ◽  
Kun Zhang ◽  
Ling Li ◽  
Yuwen Zhang

Detailed numerical analysis is presented for three-dimensional natural convection heat transfer in annulus with an internal concentric slotted cylinder. The internal slotted cylinder and the outer annulus are maintained at uniform but different temperatures. Governing equations are discretized using control volume technique based on staggered grid formulation and solved using SIMPLE algorithm with QUICK scheme. Flow and heat transfer characteristics are investigated for a Rayleigh number range of 10 to 106 while Prandtl number (Pr) is taken to be 0.7. The results indicate, at Rayleigh numbers below 105, the system shows two dimensional flow and heat transfer characteristics. On the other hand, the flow and heat transfer shows three dimensional characteristics while for Rayleigh numbers greater than 5×105. Comparison with experimental results indicated that the numerical solutions by three dimensional model can obtain more accuracy than the numerical solutions by two dimensional model. Besides, Numerical results show that the average equivalent conductivity coefficient of natural convection heat transfer of this problem can be enhanced by as much as 30% while relative slot width is more than 0.1.


Author(s):  
Murali Krishnan R. ◽  
Zain Dweik ◽  
Deoras Prabhudharwadkar

This paper provides an extension of the previously described [1] formulation of a one-dimensional model for steady, compressible flow inside a channel, to the steam turbine application. The major challenge faced in the network simulation of the steam turbine secondary system is the prediction of the condensation that occurs during the engine start-up on the cold parts that are below the saturation temperature. Neglecting condensation effects may result in large errors in the engine temperatures since they are calculated based on the boundary conditions (heat transfer coefficient and bulk temperature) which depend on the solution of the network analysis. This paper provides a detailed formulation of a one-dimensional model for steady, compressible flow inside a channel which is based on the solution of two equations for a coupled system of mass, momentum and energy equations with wall condensation. The model also accounts for channel area variation, inclination with respect to the engine axis, rotation, wall friction and external heating. The formulation was first validated against existing 1D correlation for an idealized case. The wall condensation is modeled using the best-suited film condensation models for pressure and heat transfer coefficient available in the literature and has been validated against the experimental data with satisfactory predictions.


Sign in / Sign up

Export Citation Format

Share Document