Synthesis, Characterization, and Application of TiO2–Magnetite/Chitosan Nanocomposite for Adsorptive Removal of Naphthalene from Aqueous Solutions

Author(s):  
Adel A. El-Zahhar ◽  
Abubakr M. Idris
2021 ◽  
pp. 118084
Author(s):  
Ahmed M. Omer ◽  
Eman M. Abd El-Monaem ◽  
Mona M. Abd El-Latif ◽  
Gehan M. El-Subruiti ◽  
Abdelazeem S. Eltaweil

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1312
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The contamination of surface and groundwater with phosphate originating from industrial and household wastewater remains a serious environmental issue in low-income countries. Herein, phosphate removal from aqueous solutions was studied using low-cost volcanic rocks such as pumice (VPum) and scoria (VSco), obtained from the Ethiopian Great Rift Valley. Batch adsorption experiments were conducted using phosphate solutions with concentrations of 0.5 to 25 mg·L−1 to examine the adsorption kinetic as well as equilibrium conditions. The experimental adsorption data were tested by employing various equilibrium adsorption models, and the Freundlich and Dubinin-Radushkevich (D-R) isotherms best depicted the observations. The maximum phosphate adsorption capacities of VPum and VSco were calculated and found to be 294 mg·kg−1 and 169 mg·kg−1, respectively. A pseudo-second-order kinetic model best described the experimental data with a coefficient of correlation of R2 > 0.99 for both VPum and VSco; however, VPum showed a slightly better selectivity for phosphate removal than VSco. The presence of competitive anions markedly reduced the removal efficiency of phosphate from the aqueous solution. The adsorptive removal of phosphate was affected by competitive anions in the order: HCO3− >F− > SO4−2 > NO3− > Cl− for VPum and HCO3− > F− > Cl− > SO4−2 > NO3− for VSco. The results indicate that the readily available volcanic rocks have a good adsorptive capacity for phosphate and shall be considered in future studies as test materials for phosphate removal from water in technical-scale experiments.


2018 ◽  
Vol 12 ◽  
pp. 261-272 ◽  
Author(s):  
Roya Ebrahimi ◽  
Bagher Hayati ◽  
Behzad Shahmoradi ◽  
Reza Rezaee ◽  
Mahdi Safari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document