First results of U–Pb dating of detrital zircons from the Ordovician clastic sequences of the Sol-Iletsk Block, East European Platform

2017 ◽  
Vol 473 (2) ◽  
pp. 381-385 ◽  
Author(s):  
N. B. Kuznetsov ◽  
V. M. Gorozhanin ◽  
E. A. Belousova ◽  
K. E. Degtyarev ◽  
E. N. Gorozhanina ◽  
...  
2021 ◽  
Author(s):  
Alvina Chistyakova ◽  
Roman Veselovskiy

<p>There's no doubt that nowadays detrital zircon U-Pb geochronology is actually required method of sedimentary basins analysis. Furthermore, this approach may have a lot of applications, such as a stratigraphic correlation. Here we present the first results of U–Pb LA–ICP–MS dating of detrital zircon from the Permian-Triassic red beds located within the Moscow Basin of the East European platform. Two outcrops have been studied: the Zhukov Ravine P/T boundary reference section and the Nedubrovo strata with uncertain stratigraphic position (uppermost Permian or lower Triassic?).</p><p>U–Pb ages of detrital zircon grains have been obtained for two samples – the Upper Permian and Lower Triassic age, which were taken in the proximity to the Permian–Triassic boundary in the Zhukov Ravine. Corresponding age distributions show contrasting provenance of the studied sedimentary rocks, pointing out that principal change in source of clastic material occurred on the Paleozoic-Mesozoic boundary. It means that detrital zircon U–Pb geochronology can be used as an additional independent tool for stratigraphic correlation of the Permian-Triassic red beds, at least within the Moscow Basin. We demonstrate this in the case of the Nedubrovo section with debated (Permian or Triassic?) stratigraphic position: the obtained data on detrital zircons persuasively suggests Early Triassic age of the Nedubrovo strata.</p><p>This study is supported by the Russian Foundation for Basic Research (project no. 18-05-00593).</p>


2020 ◽  
Author(s):  
Anna Fetisova ◽  
Roman Veselovskiy ◽  
Valeriy Golubev ◽  
Alvina Chistyakova ◽  
Mikhail Arefiev ◽  
...  

<p>We present the combining results of 6-year comprehensive studies, which have been done on fifteen key sections the Permian-Triassic red beds located within the Russian Basin (East European platform). In our presentation we discuss some aspects of paleomagnetism and rock magnetism of sediments, such as inclination shallowing, anisotropy of magnetic susceptibility and so on. The main achievement of our work is getting the new mean Permian-Triassic paleomagnetic pole for the East European platform as well as calculation of its Late Permian and Early Triassic poles. We also present new version of the magnetostratigraphic correlation of studied sections within the Russian Basin and with Global Geomagnetic Polarity Time Scale, taking into account obtained results of U-Pb LA-ICPMS dating of detrital zircons and paleontological constraints. One of the most intriguing conclusions of our work is a suggestion about the existing of quite long-lasting time interval of non-GAD (Geocentric Axial Dipole) configuration of the Earth's magnetic field close to the Permian-Triassic boundary, evidences of which we have found in some of studied P-Tr sections. This study is supported by the grant of the RFBR (18-05-00593).</p>


Author(s):  
Wolfgang Dörr ◽  
Eckhardt Stein ◽  
Ferdinand Kirchner ◽  
Henri Paul Meinaß ◽  
Felicitás Velledits

AbstractU–Pb age spectra of detrital zircons related to the East European Platform could be traced in paragneiss through the whole Mid-German-Crystalline Zone (Variscides, Central Europe) from the Odenwald via the Spessart to the Ruhla crystalline forming an exotic unit between Armorica and Laurussia. The depositional ages of the paragneiss are defined by the youngest age of the detrital zircons and the oldest intrusion ages as Ordovician to Silurian. The Ediacaran dominated age spectrum of detrital zircons from the paragneiss of the East Odenwald suggests the latter to be derived from the shelf of the East European Platform (Baltica), which was influenced by the 1.5 Ga old detritus delivered from a giant intrusion (Mazury granitoid, Poland). The detrital zircon age spectrum of the lower Palaeozoic paragneiss of the East Odenwald and sandstone of the northern Holy Cross Mountains are identical. The pure Sveconorwegian spectrum of the lower Palaeozoic quartzite from the Spessart, (Kirchner and Albert Int J Earth Sci 2020) and the Ruhla (Zeh and Gerdes Gondwana Res 17:254–263, 2010) could be sourced from Bornholm and southern Sweden. A U–Pb age spectrum with 88% Palaeozoic detrital zircons from a volcano-sedimentary rock of the East Odenwald is interpreted to be derived from a Silurian magmatic arc (46%), which was probably generated during the drift of the Mid-German-Crystalline Zone micro-continent to the south. A tentative plate tectonic model of Mid-German-Crystalline Zone is presented taking into account (a) the East European Platform related age spectra of the detrital zircons (b) the Ordovician to Silurian depositional age of the metasediments (c) the Silurian and Early Devonian intrusion age of the plutonic and volcanic rocks and (d) the U–Pb ages of the Middle Devonian high-grade metamorphism. The East European Platform-related part of the Mid-German-Crystalline Zone is interpreted as a micro-continent, which drifted through the Rheic Ocean to the south and collided with the Saxothuringian (Armorican Terrane Assemblage) during the Early Devonian. Such large-scale tectonic transport from the northern continent to the southern continent is also known from the SW Iberia, where Laurussia-related metasediments of the Rheic suture zone are explained by a large scale tectonic escape (Braid et al. J Geol Soc Lond 168:383–392, 2011).


2019 ◽  
pp. 43-59
Author(s):  
A. V. Ryazantsev ◽  
N. B. Kuznetsov ◽  
K. E. Degtyarev ◽  
T. V. Romanyuk ◽  
T. Yu. Tolmacheva ◽  
...  

Detrital zircons of Ordovician terrigenous sequences are studied in various Southern Uralian tectonic units.The age of detrital zircons of the West Uralian and Transuralian megazones, Taganai–Beloretsk Zone, and Kraka allochthons spans from the Late Archean to the end of the Vendian– beginning of the Cambrian; Early Precambrian and Early–Middle Riphean zircons are the most abundant. Vendian–Cambrian detrital zircons are strongly dominant in the Uraltau Zone, Sakmara allochthons, and East Uralian Megazone; the zircons of other ages are absent or extremely rare. The Vendian–Cambrian detrital zircons of all Southern Urals zones probably derive from volcanic and granitic rocks of the marginal continental belt, which are part of the Uraltau Zone, Sakmara allochthons, and East Uralian Megazone. The Lu–Hf isotopic characteristics of Vendian–Cambrian detrital zircons indicate that their parental rocks formed on a heterogeneous basement that includes blocks of juvenile and ancient continental crust. According to a model of the pre-Ordovician tectonic evolution of the Southern Urals, at the end of the Late Riphean, the passive margin of the East European Platform collided with a block on a heterogeneous basement. The formation of the block terminated with the Grenville Orogeny. After collision, a volcano-plutonic belt originated in the Vendian–Cambrian at the actively evolved margin of the East European Platform.


Palaeobotany ◽  
2012 ◽  
Vol 3 ◽  
pp. 5-11
Author(s):  
A. V. Gomankov ◽  
V. F. Tarasevich

Dispersed bisaccate pollen grains of Scutasporites nanuki were studied by means of LM, SEM and TEM. Sacci ultrastructure of these pollen grains was rather peculiar. Sacci were like a thin fi lmy fringe attached to the central body near the equator. They were fi lled with sporopollenin elements of irregular shape and various dimensions with equally various cavities between them. Such an ultrastructure is called as spongy. The morphology and ultrastructure of S. nanuki is discussed in the context of the evolution of early conifers.


2005 ◽  
Vol 7 (5) ◽  
pp. 1-12
Author(s):  
M. A. Nagornyi ◽  
V. G. Nikolaev

2020 ◽  
Vol 157 (12) ◽  
pp. 2081-2088
Author(s):  
Sergey B Felitsyn ◽  
Eugeny S. Bogomolov

AbstractAn enhanced concentration of phosphorus has been found at the stratigraphic level of the disappearance of Ediacaran taxa in two areas, the Cis-Dniester region and the Moscow syneclise, on the East European Platform (EEP). The isotope composition of neodymium was determined in Fe sulphide and phosphorite in the same beds. Measured εNd(t) values in diagenetic phosphate nodules are similar to those in iron sulphide from the same layer. During the Ediacaran − Early Cambrian, accumulation of radiogenic Nd in the epeiric basins on the EEP increased progressively from −17.9 and −19.4 in pyrite from the sequence bottom to −7.9 and −8.5 in the Early Cambrian pyrite of the central part of the EEP. The Ediacaran phosphate nodules show εNd(t) ranging from −12.9 to −15.0, while that in the Early Cambrian nodules is typically c. −9.0. These data indicate the secular change in Nd isotope composition of the water reservoir on the EEP from Ediacaran to Cambrian.


2021 ◽  
Author(s):  
Mikhail Kaban ◽  
Alexei Gvishiani ◽  
Roman Sidorov ◽  
Alexei Oshchenko ◽  
Roman Krasnoperov

<p><span>A new model has been developed for the density and thickness of the sedimentary cover in a vast region at the junction of the southern part of the East European Platform, the Pre-Caucasus and some structures adjacent to the south, including the Caucasus. Structure and density of sedimentary basins was studied by employing the approach based on decompensation of gravity anomalies. Decompensative correction for gravity anomalies reduces the effect of deep masses providing compensation of near-surface density anomalies, in contrast to the conventional isostatic or Bouguer anomalies. . The new model of sediments, which implies their thickness and density, gives a more detailed description of the sedimentary thickness and density and reveals new features which were not or differently imaged by previous studies. It helps in better understanding of the origin and evolution of the basins and provides a background for further detailed geological and geophysical studies of the region.</span></p>


Sign in / Sign up

Export Citation Format

Share Document