Determination of the wave structure of closed flows with nonuniform rotation of the boundaries by the method of an instantaneous phase difference

2015 ◽  
Vol 60 (10) ◽  
pp. 442-445 ◽  
Author(s):  
D. Yu. Zhilenko ◽  
O. E. Krivonosova
2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The determination of an external force is a very important task for the purpose of control, monitoring, and analysis of damages on structural system. This paper studies a stochastic inverse method that can be used for determining external forces acting on a nonlinear vibrating system. For the purpose of estimation, a stochastic inverse function is formulated to link an unknown external force to an observable quantity. The external force is then estimated from measurements of dynamic responses through the formulated stochastic inverse model. The applicability of the proposed method was verified with numerical examples and laboratory tests concerning the wave-structure interaction problem. The results showed that the proposed method is reliable to estimate the external force acting on a nonlinear system.


2010 ◽  
Vol 15 (4) ◽  
pp. 522-525
Author(s):  
Norihiro Sugita ◽  
Makoto Yoshizawa ◽  
Masayuki Murakoshi ◽  
Makoto Abe ◽  
Noriyasu Homma ◽  
...  

2020 ◽  
Vol 102 (5) ◽  
Author(s):  
M. Ablikim ◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
M. Albrecht ◽  
...  

2016 ◽  
Vol 23 (4) ◽  
pp. 603-614 ◽  
Author(s):  
Lazar V. Saranovac ◽  
Nada M. Vučijak

AbstractDetermination of the phase difference between two sinusoidal signals with noise components using samples of these signals is of interest in many measurement systems. The samples of signals are processed by one of many algorithms, such as 7PSF, UQDE and MSAL, to determine the phase difference. The phase difference result must be accompanied with estimation of the measurement uncertainty. The following issues are covered in this paper: the MSAL algorithm background, the ways of treating the bias influence on the phase difference result, comparison of results obtained by applying MSAL and the other mentioned algorithms to the same real signal samples, and evaluation of the uncertainty of the phase difference.


Author(s):  
Kai Lan ◽  
Hai Sun ◽  
Michael M. Bernitsas

Flow-induced vibrations (FIV) are conventionally destructive and should be suppressed. Since 2006, the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan has been studying FIV of multiple cylinders to enhance their response for harnessing hydrokinetic power from ocean, river, and tidal currents. Interactions between multiple cylinders in FIV enable high power-to-volume ratio in a converter consisting of multiple oscillators. This paper investigates experimentally the relation between oscillation patterns and frequency response of two cylinders in tandem. All experiments are conducted in the recirculating channel of the MRELab for 30,000 < Re < 120,000. Phase analysis reveals three dominant patterns of oscillation of two tandem cylinders by calculating the instantaneous phase difference between the two cylinders. This phase difference characterizes each major pattern. Pattern A is characterized by small lead or lag of one cylinder over the other. In pattern B, there is nearly 180 deg out of phase oscillations between the cylinders. In pattern C, the instantaneous phase difference changes continuously from −180 deg to +180 deg. Using frequency spectra and amplitude response, oscillation characteristics of each cylinder are revealed in vortex-induced vibration (VIV) and galloping. Pattern A occurs mostly in galloping when the first cylinder has higher stiffness. Pattern B occurs seldom and typically in the initial VIV branch and transition from VIV to galloping. Pattern C occurs in the upper and lower VIV branches; and in galloping when the lead cylinder has lower stiffness.


1943 ◽  
Vol 27 (276) ◽  
pp. 155-158
Author(s):  
Mary K. B. Harwood ◽  
R. G. Manley

Modern engineering employs the use of the cathode-ray oscillograph as a means to solve some of its problems. A Lissajou figure produced on the cathode-ray tube provides a convenient method of determining the phase difference between two sinusoidal variations of the same frequency. The figure is, in general, an ellipse and this note gives the mathematical basis of the method of determining the phase angle in terms of the axes of the ellipse and of the sides of the principal circumscribing rectangle (whose sides are parallel to the injection axes).


Sign in / Sign up

Export Citation Format

Share Document