Solving the multi object occlusion problem in a multiple camera tracking system

2009 ◽  
Vol 19 (1) ◽  
pp. 165-171 ◽  
Author(s):  
M. Mozerov ◽  
A. Amato ◽  
X. Roca ◽  
J. González
2017 ◽  
Vol 58 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Javier Miñano-Espin ◽  
Luis Casáis ◽  
Carlos Lago-Peñas ◽  
Miguel Ángel Gómez-Ruano

AbstractReal Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent) were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD) = 536, External Defenders (ED) = 491, Central Midfielders (CM) = 544, External Midfielders (EM) = 233, and Forwards (F) = 278). Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France). A repeated measures analysis of variance (ANOVA) was performed for distances covered at different intensities (sprinting (>24.0 km/h) and high-speed running (21.1-24.0 km/h) and the number of sprints (21.1-24.0 km/h and >24.0 km/h) during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p < 0.01). While ED did not show differences in their physical performance, CD (p < 0.05), CM (p < 0.01), EM (p < 0.01) and F (p > 0.01) from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.


2019 ◽  
Vol 31 (1) ◽  
pp. 1-4
Author(s):  
A Kubayi

Background: Despite a substantial body of literature on match-running distances covered by soccer players in domestic leagues, there appears to be limited information on the Union of European Football Associations (UEFA) Euro competitions.  Objective: The aim of this study was to analyse the match-running distances covered by soccer players during the UEFA Euro 2016.  Methods: A multiple-camera tracking system (InStat Ltd) was used to analyse 228 observations of soccer players who played 15 full matches during the tournament. The outfield players were categorised according to the following playing positions: central defenders (CDs), n=58; wide defenders (WDs), n=45; central midfielders (CMs), n=53, wide midfielders (WMs), n=38; and attackers (ATs), n=34. Data were reported as means with 95% confidence intervals (CI). A one-way analysis of variance (ANOVA) was undertaken to examine the significant differences among players based on playing positions.  Results: The results indicated that the overall total distance covered by players was 10 350 m, ranging from 8 446 m to 12 982 m. ATs covered the longest distance in high-speed running (872 m; 95% CI = 813–931), while CDs covered the shortest distance (542 m; 95% CI = 503–581). A statistically significant difference was observed in high-speed running among players (F (4 223) = 36.92, P=0.001).  Conclusion: The findings of this study provide soccer scientists and coaches with important information to design and implement training sessions in order to elucidate the physical demands of players in view of successful team performance. 


2012 ◽  
Vol 11 (2) ◽  
pp. 315-334 ◽  
Author(s):  
Javed Ahmed ◽  
Ahmad Ali ◽  
Asifullah Khan

2008 ◽  
Vol 2 (3) ◽  
Author(s):  
Kimberly Ryland ◽  
Carl A. Nelson ◽  
Thomas Hejkal

Retinopathy of prematurity, caused by abnormal blood vessel development in the retina of premature infants, is a leading cause of childhood blindness. It is treated using laser photocoagulation. Current methods require the surgeon to assume awkward standing positions, which can result in injury to the surgeon if repeated often. To assist surgeons in providing quality care and prevent occupational injury, a new infant surgical table was designed. The engineered solution is an attachment to a standard surgical table, saving cost and space. The adjustable height and tilt provided by the standard table combined with the 360 deg rotation designed into the attachment allow the surgeon to sit during surgery. The infant table incorporates several novel features. Critical cords and tubes are routed through an aperture at the center of the attachment to avoid pulling and kinking. A four-bar locking mechanism allows easy attachment to standard medical railing. A straight-line mechanism provides positive locking of the rotation, allowing precise positioning of the infant. Load-deflection testing was carried out using an infrared camera tracking system, and expert feedback was also obtained in a clinical setting to ascertain proper function. Strength testing showed acceptably small deflections and stresses under representative loading conditions. Benchtop and clinical testing of the infant table have demonstrated that it reliably and safely meets the design objectives. The device also shows promise for use in other infant or pediatric treatment and in small-animal veterinary practice.


Sign in / Sign up

Export Citation Format

Share Document