Role of hormones in perinatal and early postnatal development: Possible contribution to programming/imprinting phenomena

2015 ◽  
Vol 46 (5) ◽  
pp. 237-245 ◽  
Author(s):  
V. I. Goudochnikov
2017 ◽  
Vol 78 (4) ◽  
pp. 351-362 ◽  
Author(s):  
Rene Zempoalteca ◽  
Mercedes G. Porras ◽  
Suelem Moreno-Pérez ◽  
Gabriela Ramirez-Funez ◽  
Elsa L. Aguirre-Benítez ◽  
...  

2019 ◽  
Vol 63 (2) ◽  
Author(s):  
Shule Hou ◽  
Jiarui Chen ◽  
Jun Yang

The Kölliker’s organ is a transient epithelial structure during cochlea development that gradually degenerates and disappears at postnatal 12-14 days (P12-14). While apoptosis has been shown to play an essential role in the degeneration of the Kölliker’s organ, the role of another programmed cell death, autophagy, remains unclear. In our study, autophagy markers including microtubule associated protein light chain 3-II (LC3-II), sequestosome 1 (SQSTM1/p62) and Beclin1 were detected in the supporting cells of the Kölliker’s organ through immunohistochemistry staining. In addition, Western blot and real-time PCR revealed a gradually decreased expression of LC3-II and an increased expression of p62 during early postnatal development. Compared to apoptosis markers that peaks between P7 and P10, autophagy flux peaked earlier at P1 and decreased from P1 to P14. By transmission electron microscopy, we observed representative autophagosome and autolysosome that packaged various organelles in the supporting cells of the Kölliker’s organ. During the degeneration, these organelles were digested via autophagy well ahead of the cellular apoptosis. These results suggest that autophagy plays an important role in transition and degeneration of the Kölliker’s organ prior to apoptosis during the early postnatal development.


Haematologica ◽  
2016 ◽  
Vol 101 (4) ◽  
pp. e126-e128 ◽  
Author(s):  
Luigia De Falco ◽  
Mariasole Bruno ◽  
Ebru Yilmaz-Keskin ◽  
Ertan Sal ◽  
Mustafa Büyükavci ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hee Sook Bae ◽  
Yun-Kyeong Jin ◽  
Sangwoo Ham ◽  
Hee Kyoung Kim ◽  
Hyejung Shin ◽  
...  

AbstractThyroid hormone (TH) has long been believed to play a minor role in male reproduction. However, evidences from experimental model of thyrotoxicosis or hypothyroidism suggests its role in spermatogenesis. Cellular action of TH requires membrane transport via specific transporters such as monocarboxylate transporter 8 (MCT8). SLC16A2 (encodes for MCT8) inactivating mutation in humans can lead to Allan-Herndon Dudley-syndrome, a X-linked psychomotor and growth retardation. These patients present cryptorchidism which suggests a role of MCT8 during spermatogenesis. In this study, we found that Mct8 is highly expressed during early postnatal development and decreases its expression in the adulthood of testis of wild-type male rats. Histological analysis revealed that spermatogonia largely lacks MCT8 expression while spermatocytes and maturing spermatids highly express MCT8. To further understand the role of Mct8 during spermatogenesis, we generated Slc16a2 (encodes MCT8) knockout rats using CRISPR/Cas9. Serum THs (T3 and T4) level were significantly altered in Slc16a2 knockout rats when compared to wild-type littermates during early to late postnatal development. Unlike Slc16a2 knockout mice, Slc16a2 knockout rats showed growth delay during early to late postnatal development. In adult Slc16a2 knockout rats, we observed reduced sperm motility and viability. Collectively, our data unveil a functional involvement of MCT8 in spermatogenesis, underscoring the importance of TH signaling and action during spermatogenesis.


Author(s):  
Marta A. Lech ◽  
Kinga Kamińska ◽  
Monika Leśkiewicz ◽  
Elżbieta Lorenc-Koci ◽  
Zofia Rogóż

Abstract Background Preclinical and clinical studies have indicated that impaired endogenous synthesis of glutathione during early postnatal development plays a significant role in the pathophysiology of schizophrenia. Moreover, some studies have suggested that antidepressants are able to increase the activity of atypical antipsychotics which may efficiently improve the treatment of negative and cognitive symptoms of schizophrenia. Methods In the present study, we investigated the influence of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behavior and BDNF mRNA expression in adult rats exposed to glutathione deficit during early postnatal development. Male pups between the postnatal days p5–p16 were treated with the inhibitor of glutathione synthesis, BSO (L-buthionine-(S,R)-sulfoximine) and the dopamine uptake inhibitor, GBR 12,909 alone or in combination. Escitalopram and aripiprazole were given repeatedly for 21 days before the tests. On p90–92 rats were evaluated in the behavioral and biochemical tests. Results BSO given alone and together with GBR 12,909 induced deficits in the studied behavioral tests and decreased the expression of BDNF mRNA. Repeated aripiprazole administration at a higher dose reversed these behavioral deficits. Co-treatment with aripiprazole and an ineffective dose of escitalopram also abolished the behavioral deficits in the studied tests. Conclusion The obtained data indicated that the inhibition of glutathione synthesis in early postnatal development induced long-term deficits corresponding to schizophrenia-like behavior and decreased the BDNF mRNA expression in adult rats, and these behavioral deficits were reversed by repeated treatment with a higher dose of aripiprazole and also by co-treatment with aripiprazole and ineffective dose of escitalopram.


2021 ◽  
Vol 22 (12) ◽  
pp. 6171
Author(s):  
Marta Anna Lech ◽  
Monika Leśkiewicz ◽  
Kinga Kamińska ◽  
Zofia Rogóż ◽  
Elżbieta Lorenc-Koci

Growing body of evidence points to dysregulation of redox status in the brain as an important factor in the pathogenesis of schizophrenia. The aim of our study was to evaluate the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and 1-[2-Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909), a dopamine reuptake inhibitor, given alone or in combination, to Sprague–Dawley pups during early postnatal development (p5–p16), on the time course of the onset of schizophrenia-like behaviors, and on the expression of brain-derived neurotrophic factor (BDNF) mRNA and its protein in the prefrontal cortex (PFC) and hippocampus (HIP) during adulthood. BSO administered alone decreased the levels of BDNF mRNA and its protein both in the PFC and HIP. Treatment with the combination of BSO + GBR 12909 also decreased BDNF mRNA and its protein in the PFC, but in the HIP, only the level of BDNF protein was decreased. Schizophrenia-like behaviors in rats were assessed at three time points of adolescence (p30, p42–p44, p60–p62) and in early adulthood (p90–p92) using the social interaction test, novel object recognition test, and open field test. Social and cognitive deficits first appeared in the middle adolescence stage and continued to occur into adulthood, both in rats treated with BSO alone or with the BSO + GBR 12909 combination. Behavior corresponding to positive symptoms in humans occurred in the middle adolescence period, only in rats treated with BSO + GBR 12909. Only in the latter group, amphetamine exacerbated the existing positive symptoms in adulthood. Our data show that rats receiving the BSO + GBR 12909 combination in the early postnatal life reproduced virtually all symptoms observed in patients with schizophrenia and, therefore, can be considered a valuable neurodevelopmental model of this disease.


Sign in / Sign up

Export Citation Format

Share Document