Calculation of Infrasonic Noise Characteristics by Measuring the Current Values of a Two-Dimensional Wind Wave Field

2019 ◽  
Vol 65 (6) ◽  
pp. 724-730
Author(s):  
B. M. Salin ◽  
M. B. Salin
1979 ◽  
Vol 23 (01) ◽  
pp. 20-31
Author(s):  
R. B. Chapman

A numerical method is presented for solving the transient two-dimensional flow induced by the motion of a floating body. The free-surface equations are linearized, but an exact body boundary condition permits large-amplitude motion of the body. The flow is divided into two parts: the wave field and the impulsive flow required to satisfy the instantaneous body boundary condition. The wave field is represented by a finite sum of harmonics. A nonuniform spacing of the harmonic components gives an efficient representation over specified time and space intervals. The body is represented by a source distribution over the portion of its surface under the static waterline. Two modes of body motion are discussed—a captive mode and a free mode. In the former case, the body motion is specified, and in the latter, it is calculated from the initial conditions and the inertial properties of the body. Two examples are given—water entry of a wedge in the captive mode and motion of a perturbed floating body in the free mode.


2019 ◽  
Vol 877 ◽  
pp. 373-404
Author(s):  
T. Vrecica ◽  
Y. Toledo

Modelling the evolution of the wave field in coastal waters is a complicated task, partly due to triad nonlinear wave interactions, which are one of the dominant mechanisms in this area. Stochastic formulations already implemented into large-scale operational wave models, whilst very efficient, are one-dimensional in nature and fail to account for the majority of the physical properties of the wave field evolution. This paper presents new two-dimensional (2-D) formulations for the triad interactions source term. A quasi-two-dimensional deterministic mild slope equation is improved by including dissipation and first-order spatial derivatives in the nonlinear part of equation, significantly enhancing the accuracy in the breaking zone. The newly defined deterministic model is used to derive an updated stochastic model consistent from deep waters to the breaking region. It is localized following the approach derived in Vrecica & Toledo (J. Fluid Mech., vol. 794, 2016, pp. 310–342), to which several improvements are also presented. The model is compared to measurements of breaking and non-breaking spectral evolution, showing good agreement in both cases. Finally, the model is used to analyse several interesting 2-D properties of the shoaling wave field including the evolution of directionally spread seas.


Geophysics ◽  
1985 ◽  
Vol 50 (8) ◽  
pp. 1273-1284 ◽  
Author(s):  
V. Shtivelman

This paper follows previous work (Shtivelman, 1984) in which a hybrid method for wave‐field computation was developed. The method combines analytical and numerical techniques and is based upon separation of the processes of wave scattering and wave propagation. The method is further developed and improved; particularly, it is generalized for the case of an inhomogeneous medium above scattering objects (provided the inhomogeneity is weak, i.e., the effects of scattering can be neglected) and is represented by a simpler and more convenient form. Several numerical examples illustrating application of the method to the problems of two‐dimensional acoustic modeling are considered.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 562 ◽  
Author(s):  
Shemer

The mechanisms governing the evolution of the wind-wave field in time and in space are not yet fully understood. Various theoretical approaches have been offered to model wind-wave generation. To examine their validity, detailed and accurate experiments under controlled conditions have to be carried out. Since it is next to impossible to get the required control of the governing parameters and to accumulate detailed data in field experiments, laboratory studies are needed. Extensive previously unavailable results on the spatial and temporal variation of wind waves accumulated in our laboratory under a variety of wind-forcing conditions and using diverse measuring techniques are reviewed. The spatial characteristics of the wind-wave field were determined using stereo video imaging. The turbulent airflow above wind waves was investigated using an X-hot film. The wave field under steady wind forcing as well as evolving from rest under impulsive loading was studied. An extensive discussion of the various aspects of wind waves is presented from a single consistent viewpoint. The advantages of the stochastic approach suggested by Phillips over the deterministic theory of wind-wave generation introduced by Miles are demonstrated. Essential differences between the spatial and the temporal analyses of wind waves’ evolution are discussed, leading to examination of the applicability of possible approaches to wind-wave modeling.


Author(s):  
Dmitry Chalikov ◽  
Alexander V. Babanin

An exact numerical scheme for a long-term simulation of three-dimensional potential fully-nonlinear periodic gravity waves is suggested. The scheme is based on a surface-following non-orthogonal curvilinear coordinate system and does not use the technique based on expansion of the velocity potential. The Poisson equation for the velocity potential is solved iteratively. The Fourier transform method, the second-order accuracy approximation of the vertical derivatives on a stretched vertical grid and the fourth-order Runge-Kutta time stepping are used. The scheme is validated by simulation of steep Stokes waves. The model requires considerable computer resources, but the one-processor version of the model for PC allows us to simulate an evolution of a wave field with thousands degrees of freedom for hundreds of wave periods. The scheme is designed for investigation of the nonlinear two-dimensional surface waves, for generation of extreme waves as well as for the direct calculations of a nonlinear interaction rate. After implementation of the wave breaking parameterization and wind input, the model can be used for the direct simulation of a two-dimensional wave field evolution under the action of wind, nonlinear wave-wave interactions and dissipation. The model can be used for verification of different types of simplified models.


Sign in / Sign up

Export Citation Format

Share Document