scholarly journals Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos

2016 ◽  
Vol 42 (12) ◽  
pp. 800-814 ◽  
Author(s):  
A. V. Yudin ◽  
D. K. Nadyozhin ◽  
V. V. Khruschov ◽  
S. V. Fomichev
2016 ◽  
Vol 31 (25) ◽  
pp. 1650137 ◽  
Author(s):  
Mackenzie L. Warren ◽  
Grant J. Mathews ◽  
Matthew Meixner ◽  
Jun Hidaka ◽  
Toshitaka Kajino

We summarize the impact of sterile neutrino dark matter on core-collapse supernova explosions. We explore various oscillations between electron neutrinos or mixed [Formula: see text] neutrinos and right-handed sterile neutrinos that may occur within a core-collapse supernova. In particular, we consider sterile neutrino masses and mixing angles that are consistent with sterile neutrino dark matter candidates as indicated by recent X-ray flux measurements. We find that the interpretation of the observed 3.5 keV X-ray excess as due to a decaying 7 keV sterile neutrino that comprises 100% of the dark matter would have almost no observable effect on supernova explosions. However, in the more realistic case in which the decaying sterile neutrino comprises only a small fraction of the total dark matter density due to the presence of other sterile neutrino flavors, WIMPs, etc. a larger mixing angle is allowed. In this case a 7 keV sterile neutrino could have a significant impact on core-collapse supernovae. We also consider mixing between [Formula: see text] neutrinos and sterile neutrinos. We find, however, that this mixing does not significantly alter the explosion and has no observable effect on the neutrino luminosities at early times.


2022 ◽  
Vol 2022 (01) ◽  
pp. 003
Author(s):  
Edwin A. Delgado ◽  
Hiroshi Nunokawa ◽  
Alexander A. Quiroga

Abstract The observation of Earth matter effects in the spectrum of neutrinos coming from a next galactic core-collapse supernova (CCSN) could, in principle, reveal if neutrino mass ordering is normal or inverted. One of the possible ways to identify the mass ordering is through the observation of the modulations that appear in the spectrum when neutrinos travel through the Earth before they arrive at the detector. These features in the neutrino spectrum depend on two factors, the average neutrino energies, and the difference between the primary neutrino fluxes of electron and other flavors produced inside the supernova. However, recent studies indicate that the Earth matter effect for CCSN neutrinos is expected to be rather small and difficult to be observed by currently operating or planned neutrino detectors mainly because of the similarity of average energies and fluxes between electron and other flavors of neutrinos, unless the distance to CCSN is significantly smaller than the typically expected one, ∼ 10 kpc. Here, we are looking towards the possibility if the non-standard neutrino properties such as decay of neutrinos can enhance the Earth matter effect. In this work we show that invisible neutrino decay can potentially enhance significantly the Earth matter effect for both νe and ν̅e channels at the same time for both mass orderings, even if the neutrino spectra between electron and other flavors of neutrinos are very similar, which is a different feature not expected for CCSN neutrinos with standard oscillation without the decay effect.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050022
Author(s):  
M. M. Saez ◽  
O. Civitarese ◽  
M. E. Mosquera

A possible mechanism for the formation of heavy-mass elements in supernovae is the rapid neutron-capture-mechanism ([Formula: see text]-process). It depends upon the electron-fraction [Formula: see text], a quantity which is determined by beta-decay-rates. In this paper, we focus on the calculation of electroweak decay-rates in presence of massive neutrinos. The resulting expressions are then used to calculate nuclear reactions entering the rapid-neutron capture. We fix the astrophysical parameters to the case of a core-collapse supernova. The neutrino sector includes a mass scheme and mixing angles for active neutrinos, and also by including the mixing between active and sterile neutrinos. The results of the calculations show that the predicted abundances of heavy-mass nuclei are indeed affected by the neutrino mixing.


2004 ◽  
Vol 13 (10) ◽  
pp. 2065-2084 ◽  
Author(s):  
ALEXANDER KUSENKO

Neutrino oscillations in a core-collapse supernova may be responsible for the observed rapid motions of pulsars. Given the present bounds on the neutrino masses, the pulsar kicks require a sterile neutrino with mass 2–20 keV and a small mixing with the active neutrinos. The same particle can be the cosmological dark matter. Its existence can be confirmed the by the X-ray telescopes if they detect a 1–10 keV photon line from the decays of the relic sterile neutrinos. In addition, one may be able to detect gravity waves from a pulsar being accelerated by neutrinos in the event of a nearby supernova.


2019 ◽  
Vol 69 (1) ◽  
pp. 253-278 ◽  
Author(s):  
B. Müller

With myriads of detection events from a prospective Galactic core-collapse supernova, current and future neutrino detectors will be able to sample detailed, time-dependent neutrino fluxes and spectra. This will offer significant possibilities of inferring supernova physics from the various phases of the neutrino signal, ranging from the neutronization burst through the accretion and early explosion phases to the cooling phase. The signal will constrain the time evolution of bulk parameters of the young proto–neutron star, such as its mass and radius, as well as the structure of the progenitor; probe multidimensional phenomena in the supernova core; and constrain the dynamics of the early explosion phase. Aside from further astrophysical implications, supernova neutrinos may also shed light on the properties of matter at supranuclear densities and on open problems in particle physics.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
M. López ◽  
I. Di Palma ◽  
M. Drago ◽  
P. Cerdá-Durán ◽  
F. Ricci

2012 ◽  
Author(s):  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Sergei I. Blinnikov

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


Sign in / Sign up

Export Citation Format

Share Document