scholarly journals Electronic structure of an oxygen vacancy in Al2O3 from the results of Ab Initio quantum-chemical calculations and photoluminescence experiments

2010 ◽  
Vol 111 (6) ◽  
pp. 989-995 ◽  
Author(s):  
V. A. Pustovarov ◽  
V. Sh. Aliev ◽  
T. V. Perevalov ◽  
V. A. Gritsenko ◽  
A. P. Eliseev
2020 ◽  
Vol 22 (28) ◽  
pp. 16072-16079 ◽  
Author(s):  
Isuru R. Ariyarathna ◽  
Nuno M. S. Almeida ◽  
Evangelos Miliordos

High-level quantum chemical calculations reveal the electronic structure of low-lying electronic states of RuO0,±, and that the anion can activate the OH bond of water more readily.


2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


2021 ◽  
Author(s):  
Soichi Shirai ◽  
Shinji Inagaki

Practical strategies for suppressing Si–C cleavage during the polycondensation of organosilanes were presented based on ab initio quantum chemical calculations of model compounds.


2009 ◽  
Vol 50 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Yu. V. Frolov ◽  
A. V. Vashchenko ◽  
A. G. Mal’kina ◽  
B. A. Trofimov

2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


1997 ◽  
Vol 75 (12) ◽  
pp. 1851-1861 ◽  
Author(s):  
Heidi M. Muchall ◽  
Nick H. Werstiuk ◽  
Jiangong Ma ◽  
Thomas T. Tidwell ◽  
Kuangsen Sung

The He(I) photoelectron spectra of silylketenes (Me3Si)2C=C=O (1), Me5Si2CH=C=O (2), Me2Si(CH=C=O)2 (3), MeSi(CH=C=O)3 (4), (SiMe2CH=C=O)2 (5), and (CH2SiMe2CH=C=O)2 (6) have been recorded and their structures and orbital energies have been calculated by ab initio methods. Orbital energies for disilanes 2 and 5 are strongly dependent on a Si-Si-C-C torsional angle due to σ–π orbital interaction. Comparisons between experimental and simulated spectra show that 2 and 5 prefer conformations in which the Si—Si bond and ketene group(s) are approximately orthogonal (113° and 111°, respectively). Silylalkenes Me5Si2CH=CH2 (7) and (SiMe2CH=CH2)2 (8), which have been included in the computational study, show the same behavior as their corresponding silylketenes. Silylbis- and trisketenes 3–6 do not exhibit π–π interaction of any significance. For Si—Si containing compounds, the best agreement between experimental and computed data was obtained when Becke3LYP/6-31G*//HF/3-21G* was employed. Keywords: conformational behavior, electronic structure, photoelectron spectroscopy, quantum chemical calculations, silylketenes.


Sign in / Sign up

Export Citation Format

Share Document