Effect of the high-speed impact of a shaped-charge jet on the strength of titanium alloys

2007 ◽  
Vol 52 (2) ◽  
pp. 204-208 ◽  
Author(s):  
V. N. Minakov ◽  
N. V. Minakov ◽  
V. Yu. Puchkova ◽  
N. D. Rudyk ◽  
G. E. Khomenko
2021 ◽  
Vol 11 (17) ◽  
pp. 8044
Author(s):  
Youer Cai ◽  
Xudong Zu ◽  
Yaping Tan ◽  
Zhengxiang Huang

The process of liquid radial reflux interference during jet penetration in a liquid-filled composite structure is divided in this study into three stages: bottom plate reflection interference, side-wall reflection interference, and side-wall secondary reflection interference. The calculation model of the velocity interval of the disturbed jet and the residual penetration depth of the jet has been established through theoretical analysis. Results show that the liquid-filled composite structure can interfere with the high-speed section of the shaped charge jet. The accuracy of the theoretical analysis in this paper has been verified through numerical simulation, X-ray, and depth-of-penetration experiments. Among the results, those of the X-ray experiment show that the liquid-filled composite structure has interference on the tip of the shaped charge jet, which provides a possibility for the application of the liquid-filled composite structure to ammunition safety and other extreme cases.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1475-1482 ◽  
Author(s):  
JOON HONG CHOI ◽  
SOON NAM CHANG

In order to study the protection behavior of brittle materials against a shaped charge jet, the jet penetration and the fracture behavior have been investigated by the series of photographs taken by the IMACON high speed camera. The examined materials were glass, fused silica, and single crystalline quartz. The trend of crack growth in BK7 glass and fused silica indicated conical shape. In the case of the single crystalline quartz, it was observed that the crack grows fast along the axis of crystal growth. The velocity of shock wave (~ 6km/sec) into glass and fused silica was faster than the sonic velocity. However, the velocity of shock wave in the single crystalline quartz showed to be similar to its sonic velocity. The ballistic protection capability of single crystalline quartz showing fast crack growth has been evaluated to be lower than that of fused silica which has relatively slow crack growth, although the quartz has higher physical and mechanical properties.


Author(s):  
Qi-feng Zhu ◽  
Qiang-qiang Xiao ◽  
Zheng-xiang Huang ◽  
Xu-dong Zu ◽  
Xin Jia

Abstract In this study, the performance of titanium alloys (TC21, TC1), nickel-titanium (Ni-Ti) alloy, and zirconium-niobium (Zr-Nb) alloy lined shaped charge impact and penetration into concrete targets are investigated experimentally. Shaped charge jet radiographs reveal that the resulting jets of titanium alloys and Ni-Ti alloy exhibit particulate, radially dispersed behaviors, whereas that of the Zr-Nb alloy is coherent. Cavity diameters, penetration depths and parameters of the impact craters generated by the jets were analyzed using the depth of penetration (DOP) experiment method. Data indicate that the particulated jet causes more extensive damage to the surface of the concrete targets compared to the coherent jet. The penetration depth decreases to some degree, but the cavity diameter increases significantly. Penetration efficiency varies with degree of dispersion of the particulated jet and, as such, is also sensitive to stand-off distance.


Author(s):  
Hao CUI ◽  
Rui GUO ◽  
Pu SONG ◽  
Jinsheng XU ◽  
Xiaohui GU ◽  
...  

Abstract In order to study the mechanism of initiation of solid rocket motors under the impact of shaped charge jets, a shaped charge jet initiation test was experimentally studied to evaluate the safety of the motor under attack in the battlefield environment. The ex-perimental results indicated that the motor had a detonation reaction under the shaped charge jet impact. The response of the mo-tor was recorded by a high-speed camera. In addition, the mechanism of initiation of the propellant charge was evaluated using by numerical simulations. Pressure-time and reaction-time curves of propellants were analyzed in this paper.


2014 ◽  
Author(s):  
Ernest L. Baker ◽  
James Pham ◽  
Tan Vuong

Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


Sign in / Sign up

Export Citation Format

Share Document