Use of dynamic speckle interferometry for contactless diagnostics of fatigue crack initiation and determining its growth rate

2016 ◽  
Vol 61 (4) ◽  
pp. 563-568 ◽  
Author(s):  
A. P. Vladimirov ◽  
I. S. Kamantsev ◽  
V. E. Veselova ◽  
E. S. Gorkunov ◽  
S. V. Gladkovskii
2013 ◽  
Vol 594-595 ◽  
pp. 1105-1111 ◽  
Author(s):  
Haftirman Idrus ◽  
M. Afendi ◽  
Wong Chun Hoe

Fatigue crack initiation and growth of aluminum alloys with stress ratio were investigated due to it was widely used in aircraft production parts. Various types of aluminium alloy have been selected (6063-T6, 7075-T6, and 2024-T351). Compact design standard based on ASTM standard E647-11 was used for specimen. Cyclic loading experiment was conducted using Instron 8801 Hydraulic Server Machine with da/dN software for setup and parameter setting. Investigations on crack propagation and fracture surface were done by using Scanning Electron Microscope (SEM) to obtain the image of the specimen surface. Further analysis was done on the image to study on the crack initiation and propagation. Various stress ratio effects were set for the compact specimens having thickness 12.7 mm. Relationship between crack growth rate and the stress intensity factor range were further identified with the stress ratio effects. The gradients of crack growth rate increase while the stress ratio, R increase. Higher R-ratio results in higher value range of minimum load applied. Paris law and Modified Forman law were used as comparison with the experimental data for validation purposes and to provide the level of precision.


2007 ◽  
Vol 345-346 ◽  
pp. 291-294 ◽  
Author(s):  
Bokkyu Lim ◽  
Young Woo Choi

Effect of nitriding on fatigue crack initiation and growth rate has been studied on Ni-Cr-Mo steel. Specimens were nitrided for 15hr at 680°C. The fatigue limit of nitrided specimens were superior to those of annealed(680°C, 15 hr) specimens. Based on detailed observations of slip band and micro crack initiation, it is concluded that the excellent fatigue limit of nitrided specimens is attributed to improved slip initiation resistance by nitriding. The characteristic of fatigue crack growth rate of nitrided specimens was investigated by comparing with those of annealed specimens. It was found that by nitriding the crack growth rate was markedly decreased and the threshold stress intensity factor range was improved. It is concluded that the excellent fatigue limit of nitrided specimens is also attributed to improved fatigue crack growth rate and threshold stress intensity factor range by nitriding.


2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

2021 ◽  
Vol 11 (10) ◽  
pp. 4435
Author(s):  
Ho-Quang NGUYEN ◽  
Trieu-Nhat-Thanh NGUYEN ◽  
Thinh-Quy-Duc PHAM ◽  
Van-Dung NGUYEN ◽  
Xuan Van TRAN ◽  
...  

Understanding of fracture mechanics of the human knee structures within total knee replacement (TKR) allows a better decision support for bone fracture prevention. Numerous studies addressed these complex injuries involving the femur bones but the full macro-crack propagation from crack initiation to final failure and age-related effects on the tibia bone were not extensively studied. The present study aimed to develop a patient-specific model of the human tibia bone and the associated TKR implant, to study fatigue and fracture behaviors under physiological and pathological (i.e., age-related effect) conditions. Computed tomography (CT) data were used to develop a patient-specific computational model of the human tibia bone (cortical and cancellous) and associated implants. First, segmentation and 3D-reconstruction of the geometrical models of the tibia and implant were performed. Then, meshes were generated. The locations of crack initiation were identified using the clinical observation and the fatigue crack initiation model. Then, the propagation of the crack in the bone until final failure was investigated using the eXtended finite element method (X-FEM). Finally, the obtained outcomes were analyzed and evaluated to investigate the age-effects on the crack propagation behaviors of the bone. For fatigue crack initiation analysis, the stress amplitude–life S–N curve witnessed a decrease with increasing age. The maximal stress concentration caused by cyclic loading resulted in the weakening of the tibia bone under TKR. For fatigue crack propagation analysis, regarding simulation with the implant, the stress intensity factorand the energy release rate tended to decrease, as compared to the tibia model without the implant, from 0.152.5 to 0.111.9 (MPa) and from 10240 to 5133 (J), respectively. This led to the drop in crack propagation speed. This study provided, for the first time, a detailed view on the full crack path from crack initiation to final failure of the tibia bone within the TKR implant. The obtained outcomes also suggested that age (i.e., bone strength) also plays an important role in tibia crack and bone fracture. In perspective, patient-specific bone properties and dynamic loadings (e.g., during walking or running) are incorporated to provide objective and quantitative indicators for crack and fracture prevention, during daily activities.


Sign in / Sign up

Export Citation Format

Share Document