Controlling the Aerodynamic Drag of a Cylinder with Gas-Permeable Porous Inserts by Regulating Base Pressure

Author(s):  
S. G. Mironov ◽  
I. R. Valiullin ◽  
T. V. Poplavskaya
Author(s):  
Szabolcs R. Balkanyi ◽  
Luis P. Bernal ◽  
Bahram Khalighi

The effect of several drag reducing devices on the near wake of a generic ground vehicle body was investigated. Drag and base pressure measurements were conducted to identify the effects of the devices on the base drag. A Particle Image Velocimetry (PIV) study was conducted to determine changes of the near wake flow field. Averages of more than 200 PIV velocity vector fields were used to compute the mean velocity and turbulent stresses at several cross section planes. The results of the drag and base pressure measurements show that significant reductions of the total aerodynamic drag (as high as 48%) can be achieved with relatively simple devices. The results also indicated that models with base cavity have lower drag than their counter parts without it. The base pressure distributions showed a strong effect of the ground, resulting in decrease of pressure towards the lower half of the base. The PIV study showed that the extent of the recirculation region is not strongly affected by the drag reducing devices. The tested devices however, were found to have a strong effect on the underbody flow. A rapid upward deflection of the underbody flow in the near wake was observed. The devices were also found to reduce the turbulent stresses in the near wake. The turbulent stresses were found to decrease in magnitude with increasing drag reduction.


1978 ◽  
Vol 100 (4) ◽  
pp. 443-448 ◽  
Author(s):  
C. H. Marks ◽  
F. T. Buckley ◽  
W. H. Walston

Measurements were made of the base pressure distribution and the aerodynamic drag of a variety of 1/8th-scale tractor-trailer truck models in a wind tunnel at yaw angles ranging from 0° to 20°. Base-drag coefficients and overall aerodynamic-drag coefficients were calculated from this data. The measurements show that the base-drag coefficient of typical tractor-trailer trucks does not vary much with vehicle configuration, and that base drag constitutes approximately 13 to 15 percent of the total aerodynamic drag at zero yaw. The base drag increases in magnitude and also becomes a larger part of the overall aerodynamic drag as yaw angle increases, reaching about 18 to 25 percent of the overall drag at 20° yaw. Streamlining the forebody of the vehicle has little effect on the base-drag coefficient, but increases the fraction of the overall aerodynamic drag due to the base.


Author(s):  
P. Xu ◽  
E. J. Kirkland ◽  
J. Silcox

Many studies of thin metal film growth and the formation of metal-semiconductor contacts have been performed using a wide range of experimental methods. STEM annular dark field imaging could be an important complement since it may allow direct imaging of a single heavy atom on a thin silicon substrate. This would enable studies of the local atomic arrangements and defects in the initial stage of metal silicide formation.Preliminary experiments were performed in an ultra-high vacuum VG HB501A STEM with a base pressure of 1 × 10-10 mbar. An antechamber directly attached to the microscope for specimen preparation has a base pressure of 2×l0-10 mbar. A thin single crystal membrane was fabricated by anodic etching and subsequent reactive etching. The specimen was cleaned by the Shiraki method and had a very thin oxide layer left on the surface. 5 Å of gold was deposited on the specimen at room temperature from a tungsten filament coil monitored by a quartz crystal monitor.


2012 ◽  
Author(s):  
Seung-On Kang ◽  
Jun-Ho Cho ◽  
Sang-Ook Jun ◽  
Hoon-Il Park ◽  
Ki-Sun Song ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


2021 ◽  
pp. 1-10
Author(s):  
Joseph Norby ◽  
Jun Yang Li ◽  
Cameron Selby ◽  
Amir Patel ◽  
Aaron M. Johnson

2021 ◽  
Vol 55 ◽  
pp. 723-730
Author(s):  
Juraj Gerlici ◽  
Yuliia Fomina ◽  
Kateryna Kravchenko

Sign in / Sign up

Export Citation Format

Share Document