A Study of the Base Drag of Tractor-Trailer Trucks

1978 ◽  
Vol 100 (4) ◽  
pp. 443-448 ◽  
Author(s):  
C. H. Marks ◽  
F. T. Buckley ◽  
W. H. Walston

Measurements were made of the base pressure distribution and the aerodynamic drag of a variety of 1/8th-scale tractor-trailer truck models in a wind tunnel at yaw angles ranging from 0° to 20°. Base-drag coefficients and overall aerodynamic-drag coefficients were calculated from this data. The measurements show that the base-drag coefficient of typical tractor-trailer trucks does not vary much with vehicle configuration, and that base drag constitutes approximately 13 to 15 percent of the total aerodynamic drag at zero yaw. The base drag increases in magnitude and also becomes a larger part of the overall aerodynamic drag as yaw angle increases, reaching about 18 to 25 percent of the overall drag at 20° yaw. Streamlining the forebody of the vehicle has little effect on the base-drag coefficient, but increases the fraction of the overall aerodynamic drag due to the base.

2000 ◽  
Vol 203 (24) ◽  
pp. 3733-3744 ◽  
Author(s):  
V.A. Tucker

Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(−)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously used for calculating the gliding performance of a peregrine. The accuracy with which drag coefficients measured on wingless bird bodies in a wind tunnel represent the C(D,par) of a living bird is unknown. Another method for determining C(D,par) selects values that improve the fit between speeds predicted by mathematical models and those observed in living birds. This method yields lower values for C(D,par) (0.05-0.07) than wind tunnel measurements, and the present study suggests a value of 0.1 for raptors as a compromise.


1978 ◽  
Vol 100 (4) ◽  
pp. 434-438 ◽  
Author(s):  
F. T. Buckley ◽  
C. H. Marks

The effect of gap width on the aerodynamic drag of a cab-over-engine tractor-trailer combination has been investigated for full-scale gap widths ranging from 0.61 m (24 in) to 1.83 m (72 in.) over a yaw angle range of 0 to 20 deg. The average drag on the vehicle was found to increase by 16 percent as the gap width increased from 0.61 m to 1.83 m. Drag reductions were found when a vertical seal was placed along the vehicle center line between the tractor and the trailer. Generally, the drag reduction increased as the percentage of gap width that was sealed increased, and as the yaw angle increased. The average drag coefficient reduction provided by a full gap seal increased from 0.02 to 0.05 as the gap width increased from 0.61 m to 1.4 m and then decreased slightly for gap widths up to 1.83 m. The effect of vehicle configuration on gap seal effectiveness was evaluated for a gap width of 1.3 m (51 in.) using models of six different tractors and two different trailers. The average drag coefficient reductions that were found ranged from 0.04 to 0.08 with 83 percent of the data being either 0.04 or 0.05. It is shown that the use of gap seals on the nearly half-million vehicles which comprise the nation’s long-haul trucking fleet can result in the conservation of about 1.4 × 109 liters (0.37 × 109 gal) of motor fuel each year.


Author(s):  
Joseph P. Holland ◽  
Yesenia Tanner ◽  
Phillip A. Schinetsky ◽  
Semih Olcmen ◽  
Stanley Jones

In the current study, a rigid body penetrator nose shape that is optimized for minimum penetration drag [1] has been tested to determine the aerodynamic drag of such a penetrator in comparison to three additional nose shapes. Other nose shapes tested were an ogive cylinder, a 3/4 power series nose, and a standard cone. Fineness ratio for the studied nose geometries was chosen as l/d = 1 to maximize variation of the aerodynamic drag forces acting on the nose shapes. This paper discusses the measurements carried out in the University of Alabama’s 6″ × 6″ supersonic wind tunnel, using a 4 component force balance system. In separate experiments, drop tests were made in a viscous fluid to determine the skin-friction effects on these nose shapes. Supersonic wind-tunnel experiments were performed on each of the nose shapes at nine different Mach numbers ranging from 2 to 3.65. Results show that the nose shape optimized for penetration has the lowest drag coefficient of all the shapes at each Mach number within an uncertainty of 5.75%. In the viscous flow drop-test experiments, each nose shape was dropped from rest through water and then separately through viscous fluid (Nu-Calgon vacuum pump oil) under freefall conditions. Each drop was recorded via videotape, and the video was then analyzed to find the terminal velocity of each individual nose shape. Using classical dynamics equations, the weight, buoyant force, and experimentally determined terminal velocity are used to determine the drag force applied to each nose cone shape. Results indicate that while the optimal shape has a lesser drag coefficient than tangent ogive and the cone, the 3/4 power series shape is observed to have the least drag coefficient. In addition to the experiments performed, results on further investigation of the optimal nose shape for penetration are presented. The nose shape has been split into a series of line segments, and a program written has been utilized to search through numerical space for the combination of line segment slopes that produces the nose geometry with the lowest nose shape factor. The results of the numerical analysis in this study point to a different nose shape than the “optimal nose” shape tested in the current study.


Author(s):  
Timothy Crouch ◽  
Paolo Menaspà ◽  
Nathan Barry ◽  
Nicholas Brown ◽  
Mark C Thompson ◽  
...  

The main aim of this study was to evaluate the potential to reduce the aerodynamic drag by studying road sprint cyclists’ positions. A male and a female professional road cyclist participated in this wind-tunnel study. Aerodynamic drag measurements are presented for a total of five out-of-seat sprinting positions for each of the athletes under representative competition conditions. The largest reduction in aerodynamic drag measured for each athlete relative to their standard sprinting positions varied between 17% and 27%. The majority of this reduction in aerodynamic drag could be accounted for by changes in the athlete’s projected frontal area. The largest variation in repeat drag coefficient area measurements of out-of-seat sprint positions was 5%, significantly higher than the typical <0.5% observed for repeated testing of time-trial cycling positions. The majority of variation in repeated drag coefficient area measurements was attributed to reproducibility of position and sampling errors associated with time-averaged force measurements of large fluctuating forces.


Author(s):  
Jeff Howell ◽  
David Forbes ◽  
Martin Passmore

The aerodynamic drag characteristics of a passenger car have, typically, been defined by a single parameter: the drag coefficient at a yaw angle of 0°. Although this has been acceptable in the past, it does not provide an accurate measure of the effect of aerodynamic drag on fuel consumption because the important influence of the wind has been excluded. The result of using drag coefficients at a yaw angle of 0° produces an underprediction of the aerodynamic component of fuel consumption that does not reflect the on-road conditions. An alternative measure of the aerodynamic drag should take into account the effect of non-zero yaw angles, and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, such as for a driving cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed. An effective drag coefficient is determined with this approach for a range of cars using the proposed test cycle for the Worldwide Harmonised Light Vehicle Test Procedure, WLTP. The wind input acting on the car has been updated for this paper using recent meteorological data and an understanding of the effect of a shear flow on the drag loading obtained from a computational fluid dynamics study. In order to determine the different mean wind velocities acting on the car, a terrain-related wind profile has also been applied to the various phases of the driving cycle. An overall drag coefficient is derived from the work done over the full cycle. This cycle-averaged drag coefficient is shown to be significantly higher than the nominal drag coefficient at a yaw angle of 0°.


2004 ◽  
Vol 20 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Caroline Barelle ◽  
Anne Ruby ◽  
Michel Tavernier

Aerodynamic properties are one of the factors that determine speed performance in Alpine skiing. Many studies have examined the consequences of this factor in downhill skiing, and the impact of postural modifications on speed is now well established. To date, only wind tunnel tests have enabled one to measure aerodynamic drag values (a major component of the aerodynamic force in Alpine skiing). Yet such tests are incompatible with the constraints of a regular and accurate follow-up of training programs. The present study proposes an experimental model that permits one to determine a skier's aerodynamic drag coefficient (SCx) based on posture. Experimental SCx measurements made in a wind tunnel are matched with the skier's postural parameters. The accuracy of the model was determined by comparing calculated drag values with measurements observed in a wind tunnel for different postures. For postures corresponding to an optimal aerodynamic penetration (speed position), the uncertainty was 13%. Although this model does not permit an accurate comparison between two skiers, it does satisfactorily account for variations observed in the aerodynamic drag of the same skier in different postures. During Alpine ski training sessions and races, this model may help coaches assess the gain or loss in time induced by modifications in aerodynamic drag corresponding to different postures. It may also be used in other sports to help determine whether the aerodynamic force has a significant impact on performance.


1967 ◽  
Vol 71 (684) ◽  
pp. 854-858 ◽  
Author(s):  
D. J. Maull ◽  
B. J. Hoole

SummarySome experiments on the effect of boat-tailing on the pressure distribution round blunt-based aerofoils are described. The experiments were carried out at low speeds at a Reynolds number of 1.5 X 105. The wake was investigated with attention being paid to the vortex shedding, and to the distance downstream of the base where vortices form.It is shown that the theory due to Nash predicts the effect of boat-tailing on base pressure quite well and that a correlation of drag coefficient, Strouhal number and base pressure proposed by Bearman applies to the models tested here.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 494
Author(s):  
Alexander Theis ◽  
Stephan Borrmann ◽  
Subir Kumar Mitra ◽  
Andrew J. Heymsfield ◽  
Miklós Szakáll

The complex surface geometries of hailstones affect their fall behavior, fall speeds, and growth. Systematic experimental investigations on the influence of the number and length of lobes on the fall velocity and the drag coefficient of hailstones were performed in the Mainz vertical wind tunnel to provide relationships for use in numerical models. For this purpose, 3D prints of four artificial lobed hailstone models as well as spheres were used. The derived drag coefficients show no dependency in the Reynolds number in the range between 25,000 and 85,000. Further, the drag coefficients were found to increase with increasing length of lobes. All lobed hailstones show higher or similar drag coefficients than spheres. The terminal velocities of the the hailstones with short lobes are very close to each other and only reduced by about 6% from those of a sphere. The terminal velocities from the long lobed hailstones deviate up to 21% from a sphere. The results indicate that lobes on the surface of hailstones reduce their kinetic energy by a factor of up to 3 compared to a sphere. This has important consequences for the estimation of the destructive potential of hailstones.


Sign in / Sign up

Export Citation Format

Share Document