Increasing the Axial Ratio of an Electromagnetic Wave with a Meander-Line Polarizer

Author(s):  
E. R. Gafarov ◽  
A. A. Erokhin ◽  
E. A. Litinskaya
Author(s):  
Е.Р. Гафаров ◽  
А.А. Ерохин ◽  
Е.А. Литинская

In this paper, a method for increasing the axial ratio of an electromagnetic wave from small values about 0.2-0.3 to 1 was proposed using a meander line polarizer. The direct and inverse problems of the meander line polarizer excitation were solved. The reproducibility was shown.


2021 ◽  
Author(s):  
Xiaojun Huang ◽  
Xia Ma ◽  
Xuewen Li ◽  
Jingdao Fan ◽  
Liang Guo ◽  
...  

Abstract Manipulating the polarizations of electromagnetic waves by flexible and diverse means is desirable for a myriad of microwave systems. More recently, metasurfaces offer the promising alternatives to conventional polarization manipulating components because of the flexibility of their geometry could be arbitrarily customized. In this context, a bi-layered metasurface was presented to simultaneously manipulate the polarized states of reflected and transmitted microwaves. No matter whether the incident electromagnetic wave is x-polarized or y-polarized, the reflected and transmitted waves will be converted into orthogonal y- polarized waves at the operating frequency. The designed metasurface has a high polarization conversion rate(PCR) above 90% for both normal and oblique incidence. The experimental results verify the correctness of the simulated results. Finally, axial ratio and surface current distributions were employed to reveal the physics of polarization manipulation. The proposed metasurface will be beneficial to the design of flexible and versatile polarization converters and has great potential for applications in polarization controlled devices and also is believed extendable to higher frequency regimes.


Author(s):  
William H. Massover

The molecular structure of the iron-storage protein, ferritin, is becoming known in ever finer detail. The 24 apoferritin subunits (MW ca. 20,000) have a 2:1 axial ratio and are polymerized with 4:3:2 symmetry to form an outer shell surrounding a variable amount of microcrystalline iron, Recent x-ray diffraction results indicate that the projected outline of the native molecule has a quasi-hexagonal shape when viewed down the 3-fold axes of symmetry, and a quasi-square shape when looking down the 4-fold axes. To date, no electron microscope study has reported observing anything other than circular profiles, which would indicate that ferritin is strictly spherical. The apparent conflict between the "hollow sphere" of electron microscopy (E.M.) and the "truncated rhombic dodecahedron" of x-ray diffraction could reflect the poorer effective resolution of E.M. coming from radiation damage, staining, drying, etc. The present study investigates the detailed shape of individual ferritin molecules in order to search for the predicted aspherical profiles and to interpret the nature of this apparent contradiction.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Sign in / Sign up

Export Citation Format

Share Document