Dual polarization receiving antenna array for recording of ultra-wideband pulses

2010 ◽  
Vol 55 (2) ◽  
pp. 172-180 ◽  
Author(s):  
E. V. Balzovskii ◽  
Yu. I. Buyanov ◽  
V. I. Koshelev
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Hsiang Liao ◽  
Dau-Chyrh Chang

The development of four-element ultra-wideband (UWB) comb taper slot antenna array with 18 cm element spacing for real beam radar imaging is described. The four-element UWB array system with optimum element spacing is analyzed by energy pattern. A wideband double ridge horn antenna is used as the transmitting antenna, the developed large aperture UWB array is used as the receiving antenna. The transmitting antenna and the receiving antenna are combined with impulse time domain measurement system to achieve real beam radar imaging. The receiving impulse signals at various positions are processed by the time delay and sum algorithm. The examples of several aluminum cans have been verified in the resolution and compared with using the UWB array as a receive antenna and the double ridge horn as a transmit antenna in the test setup. The crossrange resolution of UWB antenna array is better than wideband double ridge horn antenna because the beam width of UWB array is narrower.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Renan Alves dos Santos ◽  
Gabriel Lobão da Silva Fré ◽  
Luís Gustavo da Silva ◽  
Marcelo Carneiro de Paiva ◽  
Danilo Henrique Spadoti

This paper presents a high-directivity ultra-wideband beamsteering antenna array. An innovative beamsteering system based on hemispherical dielectric lenses fed by a set of different printed antennas is proposed. Diversity of signals in different spatial positions can be radiated at the same time. A prototype was manufactured and characterized, operating in a bandwidth varying from 8 GHz to 12 GHz with gain up to 13 dBi.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


Author(s):  
Xiangkun Kong ◽  
Lingqi Kong ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
Yukun Zou ◽  
...  

2012 ◽  
Vol 25 ◽  
pp. 67-79 ◽  
Author(s):  
Baskaran Kasi ◽  
Chandan Kumar Chakrabarty

Sign in / Sign up

Export Citation Format

Share Document