On the solvability in a weighted space of an initial–boundary value problem for a third-order operator-differential equation with a parabolic principal part

2016 ◽  
Vol 93 (1) ◽  
pp. 85-88 ◽  
Author(s):  
A. R. Aliev ◽  
F. S. Lachinova
2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Nashat Faried ◽  
Labib Rashed ◽  
Abdel Baset I. Ahmed ◽  
Mohamed A. Labeeb

Abstract In this study, we establish existence-uniqueness of a vector function in appropriate Sobolev-type space for a boundary value problem of a fifth-order operator differential equation. Proper conditions are obtained for the given problem to be well-posed. Much effort is devoted to develop the association between these conditions and the operator coefficients of the investigated equation. In this paper, accurate estimates of the norms of the intermediate derivatives operators are presented and used to determine the solvability conditions.


Author(s):  
M.Kh. Beshtokov

The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.


2012 ◽  
Vol 17 (3) ◽  
pp. 312-326
Author(s):  
Neringa Klovienė

Third order initial boundary value problem is studied in a bounded plane domain σ with C4 smooth boundary ∂σ. The existence and uniqueness of the solution is proved using Galerkin approximations and a priory estimates. The problem under consideration appear as an auxiliary problem by studying a second grade fluid motion in an infinite three-dimensional pipe with noncircular cross-section.


1972 ◽  
Vol 15 (2) ◽  
pp. 229-234
Author(s):  
Julius A. Krantzberg

We consider the initial-boundary value problem for the parabolic partial differential equation1.1in the bounded domain D, contained in the upper half of the xy-plane, where a part of the x-axis lies on the boundary B(see Fig.1).


This work is devoted to the study of an approximate solution of the initial-boundary value problem for the second order mixed type nonhomogeneous differential equation with two degenerate lines. Similar equations have many different applications, for example, boundary value problems for mixed type equations are applicable in various fields of the natural sciences: in problems of laser physics, in magneto hydrodynamics, in the theory of infinitesimal bindings of surfaces, in the theory of shells, in predicting the groundwater level, in plasma modeling, and in mathematical biology. In this paper, based on the idea of A.N. Tikhonov, the conditional correctness of the problem, namely, uniqueness and conditional stability theorems are proved, as well as approximate solutions that are stable on the set of correctness are constructed. In obtaining an apriori estimate of the solution of the equation, we used the logarithmic convexity method and the results of the spectral problem considered by S.G. Pyatkov. The results of the numerical solutions and the approximate solutions of the original problem were presented in the form of tables. The regularization parameter is determined from the minimum estimate of the norm of the difference between exact and approximate solutions.


Sign in / Sign up

Export Citation Format

Share Document