A simple 1H nmr conformational study of some heterocyclic azomethines

1981 ◽  
Vol 59 (8) ◽  
pp. 1205-1207 ◽  
Author(s):  
Francesco A. Bottino ◽  
Maria L. Longo ◽  
Domenico Sciotto ◽  
Michele Torre

The variable temperature 60 MHz 1H nmr spectra of some heterocyclic azomethines exclude the presence of rotational isomerism. Chemical shift values and stereospecific long-range couplings are used to establish that s-trans is the existing conformation. In the case of the pyrrole derivatives a chelated s-trans rotamer is indicated, depending on the presence of an intramolecular hydrogen bond.

1985 ◽  
Vol 17 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Kenji Kamide ◽  
Kunihiko Okajima ◽  
Keisuke Kowsaka ◽  
Toshihiko Matsui

1974 ◽  
Vol 27 (12) ◽  
pp. 2617 ◽  
Author(s):  
ID Rae

N.m.r. spectra have been measured for several anilides in dimethyl sulphoxide solution for temperatures in the range 40-140�. The change of the N-H chemical shift with temperature depends on the nature of the ortho substituent on the benzene ring, being least when a strong intramolecular hydrogen bond is possible between the amide N-H and the ortho substituent. For 2?-nitroanilides, the 6?- proton becomes increasingly deshielded as the temperature is raised.


1987 ◽  
Vol 42 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Erhard T. K. Haupt ◽  
Heindirk tom Dieck ◽  
Panayot R. Bontchev

AbstractThe complete analysis of the 1H/13 C NMR spectra of α-Pyrophthalone and related compounds demonstrates that the earlier static planar description of the molecules is invalid for polar sol-vents, and here the stability of any intramolecular hydrogen bond is small.


1977 ◽  
Vol 55 (13) ◽  
pp. 2504-2509 ◽  
Author(s):  
E. Lipczyńska-Kochany ◽  
T. Urbański

New experimental evidence is given on the existence of an intramolecular hydrogen bond in β-nitroalcohols between the nitro and hydroxylic groups. The conclusion is based on examination of na → π* and infrared absorption bands and nmr spectra.


2007 ◽  
Vol 5 (4) ◽  
pp. 996-1006 ◽  
Author(s):  
Zenonas Kuodis ◽  
Albertas Rutavičius ◽  
Algirdas Matijoška ◽  
Olegas Eicher-Lorka

AbstractNew hydrazones of 2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-ylthio)acetohydrazide have been obtained and the percentages of anti/syn - conformers were determined. Based on the analyses of 1H NMR spectra, it was concluded that for hydrazones obtained from the 2- hydroxybenzaldehydes and 2’-hydroxycetophenones the ratio between the anti-and syn-conformers depends on the strength of intramolecular hydrogen bond (IMHB) between the nitrogen atom of the imino group and the proton of the 2-hydroxy group. It was shown that increase in IMHB strength results in stabilization of the anti-conformer in solution.


1968 ◽  
Vol 46 (17) ◽  
pp. 2865-2868 ◽  
Author(s):  
T. Schaefer ◽  
G. Kotowycz

A temperature dependence of the chemical shift of the hydroxyl proton in the strong intramolecular hydrogen bond in 3,5-dichlorosalicylaldehyde is observed in carbon tetrachloride and benzene-d6 solutions. Its magnitude of 0.25 to 0.30 × 10−2 p.p.m. per ° C over a range of 100 °C is in agreement with the model described by Muller and Reiter (1).


2016 ◽  
Vol 14 (47) ◽  
pp. 11199-11211 ◽  
Author(s):  
Andrei V. Afonin ◽  
Alexander V. Vashchenko ◽  
Mark V. Sigalov

Novel equations have been derived for the assessment of the E intramolecular hydrogen bond energy based on the experimental1H NMR data and the calculated QTAIM topologicalVandρparameters of the hydrogen bond critical point.


1979 ◽  
Vol 44 (8) ◽  
pp. 2494-2506 ◽  
Author(s):  
Otto Exner ◽  
Jorga Smolíková ◽  
Václav Jehlička ◽  
Ahmad S. Shawali

Substituted 2-bromo-1-phenylglyoxal 2-phenylhydrazones IIIa-f exist in tetrachloromethane or benzene solutions prevailingly in E-configuration and in conformation A with an intramolecular hydrogen bond. The latter was evidenced by the N-H valence frequency at 3 290 cm-1 and by 1H NMR shifts with reference to derivatives without a carbonyl group - α-chlorobenzaldehyde phenylhydrazones V. From dipole moments of IIIa-d, measured in benzene solution, the contribution of the hydrogen bond (μH) was evaluated to 17 . 10-30 C m. This quantity is twice larger than in any other reported compound but the direction of the vector is as usual: approximately from H to N. In structurally similar derivatives of hydroxylamine, substituted 2-phenylglyoxylhydroximoyl chlorides IVa-d, no intramolecular hydrogen bond was detected; the dipole moments found were interpreted in terms of the Z-configuration and the prevailing conformation G.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2290 ◽  
Author(s):  
Saima H. Mari ◽  
Panayiotis C. Varras ◽  
Atia-tul-Wahab ◽  
Iqbal M. Choudhary ◽  
Michael G. Siskos ◽  
...  

Detailed solvent and temperature effects on the experimental 1H-NMR chemical shifts of the natural products chrysophanol (1), emodin (2), and physcion (3) are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.1 ppb/K were observed in DMSO-d6, acetone-d6 and CDCl3 for the C(1)–OH and C(8)–OH groups which demonstrate that they are involved in a strong intramolecular hydrogen bond. On the contrary, large chemical shift differences of 5.23 ppm at 298 K and Δδ/ΔΤ values in the range of −5.3 to −19.1 ppb/K between DMSO-d6 and CDCl3 were observed for the C(3)–OH group which demonstrate that the solvation state of the hydroxyl proton is a key factor in determining the value of the chemical shift. DFT calculated 1H-NMR chemical shifts, using various functionals and basis sets, the conductor-like polarizable continuum model, and discrete solute-solvent hydrogen bond interactions, were found to be in very good agreement with the experimental 1H-NMR chemical shifts even with computationally less demanding level of theory. The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis. When the X-ray structures of chrysophanol (1), emodin (2), and physcion (3) were used as input geometries, the DFT-calculated 1H-NMR chemical shifts were shown to strongly deviate from the experimental chemical shifts and no functional dependence could be obtained. Comparison of the most important intramolecular data of the DFT calculated and the X-ray structures demonstrate significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond O–H and C–H bond lengths which deviate by 0.152 tο 0.132 Å and 0.133 to 0.100 Å, respectively, in the two structural methods. Further differences were observed in the conformation of –OH, –CH3, and –OCH3 substituents.


2008 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Jiří Svoboda ◽  
Burkhard König ◽  
Keyarash Sadeghian ◽  
Martin Schützb

The present work investigates the possibility of using 2'-oxoethyl flavin (2) as a starting material for the construction of more complicated flavin-based molecules. 2'-Oxoethyl flavin (2), prepared by oxidative degradation of commercially available riboflavin 1, is however a rather untypical aldehyde. It prefers the hydrated gem-diol form 4 in aqueous solution. Ab initio electronic structure calculations, carried out at the level of Møller-Plesset perturbation theory of second order (MP2), predict the existence of an intramolecular hydrogen bond between one of the hydroxy groups of the diol and the N1 atom of the flavin skeleton. This result is supported by 1H NMR measurements which indicate an interaction between the hydroxy groups and the conjugated ring system. We postulate that this rather strong intramolecular hydrogen bond is the origin of the enhanced stability of the gem-diol over the aldehyde form 2. Synthetic applicability of 2'-oxoethyl flavin 2 is limited by low solubility in most organic solvents and sensitivity to basic conditions. The aldehyde functional group is surprisingly reluctant to nucleophilic attack, and several reactions quite typical for aldehydes failed. Nevertheless, reductive amination led to the expected secondary amine 7. Solubility of the molecule thus increased, and a new amino group was introduced.


Sign in / Sign up

Export Citation Format

Share Document