Optically active tricyclic dilactams with non-planar cis-amide groups: Synthesis, X-ray, NMR and CD studies

1982 ◽  
Vol 47 (3) ◽  
pp. 1000-1019 ◽  
Author(s):  
Karel Bláha ◽  
Miloš Buděšínský ◽  
Zdena Koblicová ◽  
Petr Maloň ◽  
Miloš Tichý ◽  
...  

Three tricyclic dilactams were investigated as models for study of chiroptical properties of homoconjugated non-planar cis-amide groups. Racemic 5,8-diazatricyclo[6,3,0,01,5]undecane-4,9-dione (I) was partially resolved into enantiomers by chromatography on acetylcellulose. The 6-isobutyl (II) and 6-methyl (III) derivatives were prepared in optically pure forms by condensation of diethyl 4-oxoheptanedioate with (S)-1,2-diamino-4-methylpentane and (S)-1,2-diamino-propane, respectively. The respective diamines were synthesized starting from (S)-leucine and (S)-alanine: this determined the absolute configuration on the C(6) atom in both dilactams. As shown by 1H and 13C NMR spectra, the condensation reaction afforded only one of the two possible diastereoisomeric dilactams. The configurational relation between the chiral center at C(6) and the chirality of the tricyclic moiety was derived from coupling constants in the 1H NMR spectra. The configuration of compound II was confirmed by X-ray diffraction. According to 1H NMR spectra, the spatial arrangement of II in solution is similar to that in crystal, the only difference being in the local conformation of the isobutyl side chain at C(6). IR spectroscopy identified only minor differences in geometry of the two lactam groupings in II and III. All CD parameters of compounds I-III, measured in various solvents, are very similar. The CD curves show the same absolute configuration (1S, 6S) of compounds II and III and the opposite configuration of the studied enantiomer of I(1R). Parameters of the n-π dichroic band indicate a non-planar amide-grouping whose geometry is known from the X-ray analysis. Its sign agrees with the relationship derived for the chiroptical properties of defined pyramidicity on nitrogen atom in non-planar amides. The π-π dichroic bands exhibit an exciton splitting into a couplet as a result of interaction between the amide groups.

2020 ◽  
Vol 24 (10) ◽  
pp. 1139-1147
Author(s):  
Yang Mingyan ◽  
Wang Daoquan ◽  
Wang Mingan

2-Phenylcyclododecanone and 2-cyclohexylcyclododecanone derivatives were synthesized and characterized by 1H NMR, 13C NMR, HR-ESI-MS and X-ray diffraction. Their preferred conformations were analyzed by the coupling constants in the 1H NMR spectra and X-ray diffraction, which showed the skeleton ring of these derivatives containing [3333]-2-one conformation, and the phenyl groups were located at the side-exo position of [3333]-2-one conformation due to the strong π-π repulsive interaction between the π- electron of benzene ring and π-electron of carbonyl group. The cyclohexyl groups were located at the corner-syn or the side-exo position of [3333]-2-one conformation depending on the hindrance of the other substituted groups. The π-π electron effect played a crucial role in efficiently controlling the preferred conformation of 2-aromatic cyclododecanone and the other 2-aromatic macrocyclic derivatives with the similar preferred square and rectangular conformations.


1981 ◽  
Vol 46 (10) ◽  
pp. 2345-2353 ◽  
Author(s):  
Karel Baše ◽  
Bohumil Štíbr ◽  
Jiří Dolanský ◽  
Josef Duben

The 6-N(CH3)3-6-CB9H11 carbaborane reacts with sodium in liquid ammonia with the formation of 6-CB9H12- which was used as a starting compound for preparing the 4-CB8H14, 9-L-6-CB9H13 (L = (CH3)2S, CH3CN and P(C6H5)3), 1-(η5-C5H5)-1,2-FeCB9H10-, and 2,3-(η5-C5H5)2-2,31-Co2CB9H10- carboranes. The 4-CB8H14 compound was dehydrogenated at 623 K to give 4-(7)-CB8H12 carborane. Base degradation of 6-N(CH3)3-6-CB9H11 in methanol resulted in the formation of 3,4-μ-N(CH3)3CH-B5H10. The structure of all compounds was proposed on the basis of their 11B and 1H NMR spectra and X-ray diffraction was used in the case of the transition metal complexes.


2000 ◽  
Vol 78 (3) ◽  
pp. 383-394
Author(s):  
Frank Bottomley ◽  
Victor Sanchez ◽  
Robert C Thompson ◽  
Olusola O Womiloju ◽  
Zhiqiang Xu

Reduction of [(η-C5Me5)MoCl(O)]2(μ-O) or (η-C5Me5)MoCl2(O) with sodium or magnesium amalgam, magnesium turnings, or tributyltin hydride produced [(η-C5Me5)Mo]4O7, with [(η-C5Me5)Mo(O)(μ-O)]2 as a co-product. [(η-C5Me5)Mo]4O7 was characterized by X-ray diffraction, mass spectrometry, 1H NMR and IR spectroscopies, and magnetism. Crystals of [(η-C5Me5)Mo]4O7 contained a tetrahedral [(η-C5Me5)Mo]4 unit (Mo-Mo = 2.909 (3) Å) with the Mo4O7 core having the structure Mo4(μ2-O(b))3(µ2-O(c))3(µ3-O(a)) (3). Microcrystalline samples of [(η-C5Me5)Mo]4O7 were paramagnetic over the temperature range 2-300 K, with an effective moment of 1.26 μB at 300 K. [(η-C5Me5)Mo]4O7 was also paramagnetic in chloroform solution, over the temperature range 223-298 K, with an effective moment of 1.43 µB at 298 K. The 1H NMR spectrum showed a broad resonance at 16.3 ppm (Δν 1/2 = 113 Hz) and two narrow resonances at 1.89 ppm and 1.69 ppm (Δν 1/2 = 5 Hz). The magnetism and NMR spectra showed that [(η-C5Me5)Mo]4O7 existed in two forms which were in equilibrium in solution. One form was paramagnetic (S = 1), with the Mo4O7 core having the geometry 3, and the other was diamagnetic (S = 0), with the Mo4O7 core having the geometry 4.Key words: cluster, cyclopentadienyl, molybdenum, oxide, paramagnetism.


1995 ◽  
Vol 50 (4) ◽  
pp. 649-660 ◽  
Author(s):  
Cornelius G. Kreiter ◽  
Wolfgang Michels ◽  
Gerhard Heeb

Decacarbonyldirhenium (1) reacts upon UV irradiation with allene (2), 1,2-butadiene (3) and 2,3-pentadiene (4) preferentially by CO substitution and oxidative rearrangement to the corresponding enneacarbonyl-μ-η1:3-endiyl-dirhenium complexes 5, 9, and 15 and to the octacarbonyl-μ-η2:2-allene-dirhenium complexes 6, the stereoisomers 10, 11, and 16. At elevated temperature 5, 9, and 15 loose CO and yield by a reductive rearrangement also the complexes 6, 10, 11, and 16. In addition to these main products, depending upon the allene derivative used, various by-products are obtained.By-products of the reaction o f 1 with 2 are octacarbonyl-μ-η3:3-(2,3-dimethylene-buta-1,4- diyl)dirhenium (7) and μ-η2:2-allene-hexacarbonyl-μ-η1:3-1-propene-1,3-diyl-dirheniurn (8). The photo reaction of 1 with 3 yields, in addition to 9-11, tetracarbonyl-η3-(E-5-ethylidene- 4-methyl-2-cyclopenten-1-yl)rhenium (12) and tetracarbonyl-η3-(Z-5-ethyliden-4- methyl-2-cyclopenten-1-yl)rhenium (13) as a mixture of isomers. 1 and 4 form the by-products tetracarbonyl-η3-(EZ-3-penten-2-yl)rhenium (17), tetracarbonyl-η3-(EE-3-penten-2-yl)rhenium (18) and heptacarbonyl-μ-η1:2:1:2-(4,5-dimethyl-2,6-octadiene-3,6-diyl)dirhenium (19) with an unusually bridging and chelating ligand. The constitutions of the reaction products have been concluded from the IR and 1H NMR spectra. For 19 the crystal and molecular structure has been determined by X-ray diffraction analysis.


2008 ◽  
Vol 2008 (10) ◽  
pp. 555-558 ◽  
Author(s):  
You Peng ◽  
Zeyuan Deng ◽  
Shaojie Lang ◽  
Yawei Fan

In order to improve bioavailability and anticancer activity of genistein, a series of novel sulfonic acid ester prodrugs of the isoflavone genistein were synthesised in high yield with excellent regioselectivity. Their structures were characterised by IR, MS, elemental analysis and 1H NMR spectra. The crystal structure was examined by X-ray diffraction. X-ray structure determination revealed that all the aromatic rings in the compound are not coplanar. In the crystal structure, molecules are linked through intermolecular C-H···O hydrogen bonds, forming layers parallel to the ab plane.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Tetsuji Moriguchi ◽  
Tatsuya Egami ◽  
Akihiko Tsuge

A large calixarene-like metacyclophane, 4′,9′,4″,9″-tetra-tert-butyl-1′,6′,1″,6″-tetramethoxy-2,5-dioxa[3.3]metabiphenylophane, was synthesized by an intermolecular condensation reaction of its corresponding bischloromethyl-biphenyl and bishydroxymethyl-biphenyl precursors. After molecular characterization by 1H NMR spectroscopy and mass spectrometry, the compound generated single crystals by recrystallization from a dichloromethane/hexane mixture, facilitating an exact conformational determination via X-ray diffraction analysis. The crystal was found to belong to the monoclinic space group P21/n with cell parameters a = 19.908(2) Å, b = 9.7193(11) Å, c = 23.350(3) Å, β = 109.594(1)°, and Dcalc=1.150 g/cm3 at 90 K. The compound adopted quite strained 1,2-alternate-like conformations because its biphenyl parts displayed large dihedral angles and rigidity. The crystal did not incorporate any solvent molecule but its molecular cavity and crystal space were effectively filled by the substituents.


1986 ◽  
Vol 51 (4) ◽  
pp. 903-929 ◽  
Author(s):  
Miroslav Holub ◽  
Miloš Buděšínský ◽  
Zdenka Smítalová ◽  
David Šaman ◽  
Urszula Rychłewska

On the basis of spectroscopic, particularly 1H NMR data, isosilerolide was assigned structure I, including the absolute configuration. The structure was confirmed by X-ray diffraction. Isosilerolide represents a new stereoisomeric type of natural eudesmanolides, characterized as 5βH, 6αH, 7αH, 10αCH3-eudesman-6,12-olide. As shown by the chemical correlation of isosilerolide (I) with silerolide (III) and lasolide (X), the latter two natural lactones belong to this stereoisomeric group of eudesmanolides. Analysis of models and 1H NMR data shows that structures of some eudesman-6,12-olides, published by other authors, should be corrected.


1989 ◽  
Vol 67 (12) ◽  
pp. 2071-2077 ◽  
Author(s):  
M. Jiménez E. ◽  
K. Velézquez ◽  
A. Lira-Rocha ◽  
A. Ortega ◽  
E. Díaz ◽  
...  

The total assignment of 1H NMR spectra of a pentacyclic triterpene from Loeseliamexicana was performed using selected 2D-NMR experiments (COSY, NOE). X-ray diffraction data were obtained from the parent compound as supplemental information to the NMR investigations. The data allowed for the unambiguous assignment of the structure and the stereochemistry of the title compound. Keywords: pentacyclic triterpene NMR, 2D NMR of terpenes, X-ray of triterpenes, triterpenyl angelate NMR, X-ray -2D NMR structure determination.


1983 ◽  
Vol 48 (9) ◽  
pp. 2593-2603 ◽  
Author(s):  
Karel Baše

Decaborane(14) reacts with NaNO2 in tetrahydrofuran forming the [9-tetrahydrofuran-6-NO2B10H12]- salt which after protonization with concentrated H2SO4 or diluted HCl affords azaboranes 6-NB9H12 and 4-NB8H13, respectively. The 6-NB9H12 azaborane is hydrolyzed to the 4-NB8H13 azaborane and reacts with Lewis bases under the formation of the 9-L-6-NB9H12 ligand derivatives (L = (CH)S, CHCN, (CH)P). By the reduction of 9-CHCN-6-NBH with LiAlH4 in tetrahydrofuran the 6-NB9H13- anion was prepared. By an analogous reaction of decaborane(14) with KHSO3 in water and by a subsequent protonization of the formed intermediate with concentrated H2SO4 or diluted HCl the thiaboranes 6-SB9H11 and 4-SB8H12, respectively, were prepared. The reaction of decaborane(14) with Na2SeO3 in tetrahydrofuran followed by the protonization of the intermediate with diluted HCl afforded the 7,8-Se2B9H9 species. Structures of all compounds were proposed on the basis of the 11B and 1H NMR spectra; in the case of 4-NB8H13, the structure was determined by the X-ray diffraction analysis.


1999 ◽  
Vol 54 (7) ◽  
pp. 929-939 ◽  
Author(s):  
Miki Hasegawa ◽  
Yasunori Yamada ◽  
Ken-ichi Kumagai ◽  
Toshihiko Hoshi

The electronic and molecular structure of 2,6-bis{N-(2-hydroxyphenyl)iminomethyl}-4- methylphenol (hpimp) is clarified from the measurements of electronic absorption and 1H NMR spectra in various solvents and an X-ray diffraction analysis, together with MO calculations. Electronic absorption bands of hpimp are at 422, 397.9, 359, 341, 294.3, 265.8, and 224 nm in the non-polar solvent cyclohexane. In polar solvents, such as methanol, an additional band which is assigned to a partly formed keto-amine hpimp, is observed at 499 nm. From the 1H NMR spectra it is seen that hpimp exists in the enol-imine form in non-polar solvents, and as an equilibrium mixture of enol-imine and keto-amine forms in polar solvents. Each electronic absorption band of solid hpimp in a KBr disk is broadened compared with the solution state, and an additional band, again assigned to the keto-amine form, appears around 499 nm. An X-ray diffraction analysis shows that hpimp assumes a keto-amine structure in the solid state, and forms a column structure along the c-axis. MO calculations suggest that the enol-imine hpimp has a twist structure around the two C−C single bonds, the twist angle being 100° to 120°.


Sign in / Sign up

Export Citation Format

Share Document