scholarly journals Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

2012 ◽  
Vol 71 (11) ◽  
pp. 1809-1814 ◽  
Author(s):  
Kwangwoo Kim ◽  
Elizabeth E Brown ◽  
Chan-Bum Choi ◽  
Marta E Alarcón-Riquelme ◽  
Jennifer A Kelly ◽  
...  

ObjectiveSystemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αM (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.MethodsThe authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single-marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.ResultsThe A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).ConclusionThese findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.

2020 ◽  
pp. annrheumdis-2020-219209
Author(s):  
Xianyong Yin ◽  
Kwangwoo Kim ◽  
Hiroyuki Suetsugu ◽  
So-Young Bang ◽  
Leilei Wen ◽  
...  

ObjectiveSystemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations.MethodsWe newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations.ResultsWe identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10−8). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (rg=−0.242) and non-albumin protein (rg=0.238).ConclusionThis study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.


2021 ◽  
Vol 61 (1) ◽  
Author(s):  
Yu Fu ◽  
Qing Lin ◽  
Zhi-rong Zhang

Abstract Objective To more precisely estimate the association between the tumor necrosis factor ligand superfamily member 4 (TNFSF4) gene polymorphisms and systemic lupus erythematosus (SLE) susceptibility, we performed a meta-analysis on the association of the following single nucleotide polymorphisms (SNPs) of TNFSF4 with SLE: rs1234315, rs844648, rs2205960, rs704840, rs844644, rs10489265. Methods A literature-based search was conducted using PubMed, MEDLINE, Embase, Web of Science databases, and Cochrane Library databases to identify all relevant studies. And the association of TNFSF4 gene polymorphisms and SLE susceptibility was evaluated by pooled odds ratio (OR) with 95% confidence interval (CI). Results The meta-analysis produced overall OR of 1.42 (95% CI 1.36–1.49, P < 0.00001), 1.41 (95% CI 1.36–1.46, P < 0.00001) and 1.34 (95% CI 1.26–1.42, P < 0.00001) for the rs2205960, rs1234315 and rs704840 polymorphisms respectively, confirming these three SNPs confer a significant risk for the development of SLE. On the other hand, the meta-analysis produced overall OR of 0.92 (95% CI 0.70–1.21, P = 0.54) for the rs844644 polymorphism, suggesting no significant association. And no association was also found between either rs844648 1.11 (OR 1.11, 95% CI 0.86–1.43, P = 0.41) or rs10489265 (OR 1.17, 95% CI 0.94–1.47, P = 0.17) polymorphism with SLE susceptibility, respectively. Conclusions Our meta-analysis demonstrated that the TNFSF4 rs2205960, rs1234315 and rs844840 SNPs was significantly associated with an increased risk of SLE.


2013 ◽  
Vol 40 (6) ◽  
pp. 842-849 ◽  
Author(s):  
Paula S. Ramos ◽  
James C. Oates ◽  
Diane L. Kamen ◽  
Adrienne H. Williams ◽  
Patrick M. Gaffney ◽  
...  

Objective.Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate-related genes biological candidates for disease susceptibility. We analyzed variation in reactive intermediate genes for association with SLE in 2 populations with African ancestry.Methods.A total of 244 single-nucleotide polymorphisms (SNP) from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls). Single-marker, haplotype, and 2-locus interaction tests were computed for these populations.Results.The glutathione reductase gene GSR (rs2253409; p = 0.0014, OR 1.26, 95% CI 1.09–1.44) was the most significant single SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575; p = 0.0065, OR 2.10, 95% CI 1.23–3.59) and NO synthase gene NOS1 (rs561712; p = 0.0072, OR 0.62, 95% CI 0.44–0.88) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409; p = 0.00072, OR 1.26, 95% CI 1.10–1.44). Haplotype and 2-locus interaction analyses also uncovered different loci in each population.Conclusion.These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.


2010 ◽  
Vol 70 (3) ◽  
pp. 463-468 ◽  
Author(s):  
Gisela Orozco ◽  
Steve Eyre ◽  
Anne Hinks ◽  
John Bowes ◽  
Ann W Morgan ◽  
...  

BackgroundEvidence is beginning to emerge that there may be susceptibility loci for rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) that are common to both diseases.ObjectiveTo investigate single nucleotide polymorphisms that have been reported to be associated with SLE in a UK cohort of patients with RA and controls.Methods3962 patients with RA and 9275 controls were included in the study. Eleven SNPs mapping to confirmed SLE loci were investigated. These mapped to the TNFSF4, BANK1, TNIP1, PTTG1, UHRF1BP1, ATG5, JAZF1, BLK, KIAA1542, ITGAM and UBE2L3 loci. Genotype frequencies were compared between patients with RA and controls using the trend test.ResultsThe SNPs mapping to the BLK and UBE2L3 loci showed significant evidence for association with RA. Two other SNPs, mapping to ATG5 and KIAA1542, showed nominal evidence for association with RA (p=0.02 and p=0.02, respectively) but these were not significant after applying a Bonferroni correction. Additionally, a significant global enrichment in carriage of SLE alleles in patients with RA compared with controls (p=9.1×10−7) was found. Meta-analysis of this and previous studies confirmed the association of the BLK and UBE2L3 gene with RA at genome-wide significance levels (p<5×10−8). Together, the authors estimate that the SLE and RA overlapping loci, excluding HLA-DRB1 alleles, identified so far explain ∼5.8% of the genetic susceptibility to RA as a whole.ConclusionThe findings confirm the association of the BLK and UBE2L3 loci with RA, thus adding to the list of loci showing overlap between RA and SLE.


2016 ◽  
Vol 76 (1) ◽  
pp. 286-294 ◽  
Author(s):  
Ana Márquez ◽  
Laura Vidal-Bralo ◽  
Luis Rodríguez-Rodríguez ◽  
Miguel A González-Gay ◽  
Alejandro Balsa ◽  
...  

ObjectivesDuring the last years, genome-wide association studies (GWASs) have identified a number of common genetic risk factors for rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). However, the genetic overlap between these two immune-mediated diseases has not been thoroughly examined so far. The aim of the present study was to identify additional risk loci shared between RA and SLE.MethodsWe performed a large-scale meta-analysis of GWAS data from RA (3911 cases and 4083 controls) and SLE (2237 cases and 6315 controls). The top-associated polymorphisms in the discovery phase were selected for replication in additional datasets comprising 13 641 RA cases and 31 921 controls and 1957 patients with SLE and 4588 controls.ResultsThe rs9603612 genetic variant, located nearby the COG6 gene, an established susceptibility locus for RA, reached genome-wide significance in the combined analysis including both discovery and replication sets (p value=2.95E−13). In silico expression quantitative trait locus analysis revealed that the associated polymorphism acts as a regulatory variant influencing COG6 expression. Moreover, protein–protein interaction and gene ontology enrichment analyses suggested the existence of overlap with specific biological processes, specially the type I interferon signalling pathway. Finally, genetic correlation and polygenic risk score analyses showed cross-phenotype associations between RA and SLE.ConclusionsIn conclusion, we have identified a new risk locus shared between RA and SLE through a meta-analysis including GWAS datasets of both diseases. This study represents the first comprehensive large-scale analysis on the genetic overlap between these two complex disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan-yuan Qi ◽  
Yan Cui ◽  
Hui Lang ◽  
Ya-ling Zhai ◽  
Xiao-xue Zhang ◽  
...  

AbstractSystemic lupus erythematosus (SLE) is a typical autoimmune disease with a strong genetic disposition. Genetic studies have revealed that single-nucleotide polymorphisms (SNPs) in zinc finger protein (ZNF)-coding genes are associated with susceptibility to autoimmune diseases, including SLE. The objective of the current study was to evaluate the correlation between ZNF76 gene polymorphisms and SLE risk in Chinese populations. A total of 2801 individuals (1493 cases and 1308 controls) of Chinese Han origin were included in this two-stage genetic association study. The expression of ZNF76 was evaluated, and integrated bioinformatic analysis was also conducted. The results showed that 28 SNPs were associated with SLE susceptibility in the GWAS cohort, and the association of rs10947540 was successfully replicated in the independent replication cohort (Preplication = 1.60 × 10−2, OR 1.19, 95% CI 1.03–1.37). After meta-analysis, the association between rs10947540 and SLE was pronounced (Pmeta = 9.62 × 10−6, OR 1.29, 95% CI 1.15–1.44). Stratified analysis suggested that ZNF76 rs10947540 C carriers were more likely to develop relatively high levels of serum creatinine (Scr) than noncarriers (CC + CT vs. TT, p = 9.94 × 10−4). The bioinformatic analysis revealed that ZNF76 rs10947540 was annotated as an eQTL and that rs10947540 was correlated with decreased expression of ZNF76. Remarkably, significantly reduced expression of ZNF76 was confirmed by expression data from both our laboratory and an array-based expression database. Taken together, these results suggest that ZNF76 rs10947540 is a possible susceptibility factor associated with SLE susceptibility. The mechanism underlying the relationship between ZNF76 and SLE pathogenesis still requires further investigation.


2021 ◽  
Vol 41 (4) ◽  
pp. 681-689
Author(s):  
Vasileios Paraschou ◽  
Nikolaos Chaitidis ◽  
Zoi Papadopoulou ◽  
Patroklos Theocharis ◽  
Pavlos Siolos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document