FRI0538 Validation of A Semi-Automatic Algorithm for Defining Cortical Breaks in Finger Joints Using High-Resolution Peripheral Quantitative CT by Microct

2016 ◽  
Vol 75 (Suppl 2) ◽  
pp. 634.2-635
Author(s):  
M. Peters ◽  
A. Scharmga ◽  
A. van Tubergen ◽  
B. van Rietbergen ◽  
R. Weyers ◽  
...  
2016 ◽  
Vol 75 (Suppl 2) ◽  
pp. 635.1-635
Author(s):  
M. Peters ◽  
A. Scharmga ◽  
J. de Jong ◽  
A. van Tubergen ◽  
R. Weijers ◽  
...  

2009 ◽  
Vol 31 (1) ◽  
pp. 240-247 ◽  
Author(s):  
Wingchi E. Kwok ◽  
Zhigang You ◽  
Johnny Monu ◽  
Gwysuk Seo ◽  
Christopher Ritchlin

2018 ◽  
Vol 85 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Eric Lespessailles ◽  
Nada Ibrahim-Nasser ◽  
Hechmi Toumi ◽  
Roland Chapurlat

2010 ◽  
Vol 69 (9) ◽  
pp. 1671-1676 ◽  
Author(s):  
A. Fouque-Aubert ◽  
S. Boutroy ◽  
H. Marotte ◽  
N. Vilayphiou ◽  
J. Bacchetta ◽  
...  

2010 ◽  
Vol 33 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Wingchi E. Kwok ◽  
Zhigang You ◽  
Gwysuk Seo ◽  
Amy Lerner ◽  
Saara Totterman ◽  
...  

2019 ◽  
Vol 9 ◽  
pp. 19
Author(s):  
Wingchi Edmund Kwok ◽  
Zhigang You ◽  
Johnny Monu ◽  
Hua He

Objective: High-resolution images of finger joints with chemical-shift elimination can be obtained using an interleaved water-fat (IWF) sequence. This study assessed IWF imaging of finger joints in the delineation of bone structures by comparing images of cadaver fingers with those of microcomputed tomography (CT) that served as a standard reference. Materials and Methods: IWF images with spatial resolution of 176 µ × 176 µ × 300 µ were obtained from the distal and proximal interphalangeal joints of two cadaver finger specimens using a custom-built radiofrequency receive coil at 1.5T. Regular three-dimensional gradient-echo (GRE) images were also acquired with similar parameters and compared with the IWF images to evaluate the effects of chemical shift. Micro-CT scans were obtained and served as the standard reference. The image data were reviewed by two experienced musculoskeletal radiologists in consensus. The delineation of normal joint structures and abnormalities in the finger specimens as revealed by the magnetic resonance imaging (MRI) and micro-CT images were compared. The IWF and regular GRE images were assigned scores 0–3 for the depiction of apparent marginal bone defects, with zero being the same in appearance to the micro-CT image and three as having minimal resemblance to it. Statistical analysis of the scoring results was conducted to compare the two MRI techniques. Results: The high-resolution IWF images provided accurate delineation of bone and calcified structures as seen in micro-CT. The thickness of subchondral bone was depicted similarly on the IWF water + fat and the micro-CT images but not on the regular GRE images. The regular GRE sequence showed false marginal bone defects not observed with IWF and micro-CT. In addition, the IWF water-only images facilitated the identification of bone cyst by revealing its water content. Conclusion: High-resolution IWF imaging should be useful for the early diagnosis and treatment assessment of arthritis and should also benefit basic research in the pathophysiology of the disease.


Sign in / Sign up

Export Citation Format

Share Document