scholarly journals FRI0536 Pregabalin efficacy in treatment of chronic pain in patients with knee osteoarthritis

Author(s):  
E. Filatova ◽  
E. Turovskaya ◽  
L. Alekseeva
PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161687 ◽  
Author(s):  
Hamza M. Alshuft ◽  
Laura A. Condon ◽  
Robert A. Dineen ◽  
Dorothee P. Auer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Simis ◽  
Marta Imamura ◽  
Paulo S. de Melo ◽  
Anna Marduy ◽  
Kevin Pacheco-Barrios ◽  
...  

AbstractThis study aims to investigate the associative and multivariate relationship between different sociodemographic and clinical variables with cortical excitability as indexed by transcranial magnetic stimulation (TMS) markers in subjects with chronic pain caused by knee osteoarthritis (OA). This was a cross-sectional study. Sociodemographic and clinical data were extracted from 107 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models per TMS markers: motor threshold (MT), motor evoked potential (MEP), short intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). In our multivariate models, the two markers of intracortical inhibition, SICI and CSP, had a similar signature. SICI was associated with age (β: 0.01), WOMAC pain (β: 0.023), OA severity (as indexed by Kellgren–Lawrence Classification) (β: − 0.07), and anxiety (β: − 0.015). Similarly, CSP was associated with age (β: − 0.929), OA severity (β: 6.755), and cognition (as indexed by the Montreal Cognitive Assessment) (β: − 2.106). ICF and MT showed distinct signatures from SICI and CSP. ICF was associated with pain measured through the Visual Analogue Scale (β: − 0.094) and WOMAC (β: 0.062), and anxiety (β: − 0.039). Likewise, MT was associated with WOMAC (β: 1.029) and VAS (β: − 2.003) pain scales, anxiety (β: − 0.813), and age (β: − 0.306). These associations showed the fundamental role of intracortical inhibition as a marker of adaptation to chronic pain. Subjects with higher intracortical inhibition (likely subjects with more compensation) are younger, have greater cartilage degeneration (as seen by radiographic severity), and have less pain in WOMAC scale. While it does seem that ICF and MT may indicate a more acute marker of adaptation, such as that higher ICF and MT in the motor cortex is associated with lesser pain and anxiety.


2020 ◽  
Vol 26 (4) ◽  
pp. 163-174
Author(s):  
M. N. Kozadaev ◽  
I. N. Shchanitsyn ◽  
M. V. Girkalo ◽  
S. P. Bazhanov ◽  
V. Yu. Ulyanov ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xuemin Wu ◽  
Jingjing Liu ◽  
Min Liu ◽  
Tao Wu

The chronic pain of knee osteoarthritis in the elderly is investigated in detail in this paper, as well as the complexity of chronic pain utilising neuroimaging recognition techniques. Chronic pain in knee osteoarthritis (KOA) has a major effect on patients’ quality of life and functional activities; therefore, understanding the causes of KOA pain and the analgesic advantages of different therapies is important. In recent years, neuroimaging techniques have become increasingly important in basic and clinical pain research. Thanks to the application and development of neuroimaging techniques in the study of chronic pain in KOA, researchers have found that chronic pain in KOA contains both injury-receptive and neuropathic pain components. The neuropathic pain mechanism that causes KOA pain is complicated, and it may be produced by peripheral or central sensitization, but it has not gotten enough attention in clinical practice, and there is no agreement on how to treat combination neuropathic pain KOA. As a result, using neuroimaging techniques such as magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS), this review examines the changes in brain pathophysiology-related regions caused by KOA pain, compares the latest results in pain assessment and prediction, and clarifies the central brain analgesic mechanistic. The capsule network model is introduced in this paper from the perspective of deep learning network structure to construct an information-complete and reversible image low-level feature bridge using isotropic representation, predict the corresponding capsule features from MRI voxel responses, and then, complete the accurate reconstruction of simple images using inverse transformation. The proposed model improves the structural similarity index by about 10%, improves the reconstruction performance of low-level feature content in simple images by about 10%, and achieves feature interpretation and analysis of low-level visual cortical fMRI voxels by visualising capsule features, according to the experimental results.


2020 ◽  
Vol 36 (8) ◽  
pp. 569-577
Author(s):  
Staja Q. Booker ◽  
Kimberly T. Sibille ◽  
Ellen L. Terry ◽  
Josue S. Cardoso ◽  
Burel R. Goodin ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuzhao Huang ◽  
Qiufang Deng ◽  
Liuqing Yang ◽  
Jiahui Ma ◽  
Ziyang Wang ◽  
...  

Background. Knee osteoarthritis (KOA) is a common degenerative disease associated with joint dysfunction and pain. Ultrasound-guided radiofrequency (RF) may be a promising therapy in the treatment of chronic pain for KOA patients. Objective. To evaluate the efficacy and safety of ultrasound-guided RF treatment for chronic pain in patients with KOA. Design. A systematic review was conducted, and a meta-analysis was carried out when possible. Setting. We examined the studies evaluating the clinical efficiency of ultrasound-guided RF on chronic pain in KOA population. Method. A systematic review for the efficacy and safety of ultrasound-guided RF treatment for pain management of KOA patients was carried out in PubMed, EMBASE, Cochrane Library, Web of Science, Wanfang Data, and China National Knowledge Infrastructure (CNKI) from the date of inception to February 2020, and a meta-analysis was conducted. The primary outcomes of pain intensity (visual analogue scale or numerical rating scale) and knee function [the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)] were evaluated from baseline to various follow-up times by random-effects model. Heterogeneity was assessed by I2 statistic and the potential sources of heterogeneity by subgroup and metaregression analyses, respectively. Results. Eight publications with 256 patients were included in the meta-analysis. RF could relieve pain with −4.196 of pooled mean difference and improve knee function by decreasing 23.155 points in WOMAC. Three patients had ecchymosis, two with hypoesthesia and one with numbness after the procedure, and improved within 6 months. Furthermore, study design and treatment target were the sources of heterogeneity by subgroup and metaregression analyses, accounting for 37% and 74% of variances, respectively. Target of genicular nerve achieved better pain relief than intra-articular or sciatic nerve. Sensitivity analysis showed that removal of any single study was unlikely to overturn the findings. Limitations. There were some limitations in the study. Firstly, the small number of relevant studies limited the confidence level of the meta-analysis. Also, the significant heterogeneity may not be explained due to the limited data. Secondly, the direct comparison of two different guidance methods (ultrasound vs. fluoroscopy) for RF therapy is lacking. In addition, the outcomes were blindly assessed in the meta-analysis from all studies according to evaluation of bias, which could affect the reality of the data. Finally, most of the studies only provided short follow-up times, so we could not analyze the long-term effectiveness of ultrasound-guided RF in the treatment of patients with KOA. Conclusions. Ultrasonography is an effective, safe, nonradiative, and easily applicable guidance method for RF in pain relief and functional improvement in KOA patients.


Sign in / Sign up

Export Citation Format

Share Document