scholarly journals OP0039 ALPN-303, AN ENHANCED, POTENT DUAL BAFF/APRIL ANTAGONIST ENGINEERED BY DIRECTED EVOLUTION FOR THE TREATMENT OF SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) AND OTHER B CELL-RELATED AUTOIMMUNE DISEASES

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 21.2-21
Author(s):  
S. R. Dillon ◽  
L. S. Evans ◽  
K. E. Lewis ◽  
J. Yang ◽  
M. W. Rixon ◽  
...  

Background:BAFF and APRIL are TNF superfamily members that form homo- and heteromultimers that bind TACI and BCMA on B cells; BAFF also binds BAFF-R. BAFF and APRIL support B cell development, differentiation, and survival, particularly for plasmablasts and plasma cells, and play critical roles in the pathogenesis of B cell-related autoimmune diseases. In nonclinical models, inhibition of either BAFF or APRIL alone mediates relatively modest effects, whereas their co-neutralization dramatically reduces B cell function, including antibody production. Fc fusions of wild-type (WT) TACI (e.g. atacicept and telitacicept) target both BAFF and APRIL and have demonstrated promising clinical potential in e.g. systemic lupus erythematosus (SLE) and IgA nephropathy but have not yet clearly exhibited long-term and/or complete disease remissions.Objectives:To generate a dual BAFF/APRIL antagonist with inhibitory activity superior to WT TACI and BCMA and with the potential to improve clinical outcomes in B cell-mediated diseases.Methods:Our directed evolution platform was used to identify a potent variant TNFR domain (vTD) of TACI that exhibits significantly enhanced affinity for BAFF and APRIL as compared to WT TACI; this TACI vTD domain was fused to a human IgG Fc to generate the therapeutic candidate ALPN-303. ALPN-303 was evaluated for functional activity in: 1) human lymphocyte assays, 2) the NOD.Aec1Aec2 spontaneous model of Sjogren’s syndrome (SjS), 3) the bm12-induced mouse model of lupus, 4) the (NZB/NZW)F1 spontaneous model of lupus, and 5) preclinical rodent and cynomolgus monkey pharmacokinetic/pharmacodynamic studies.Results:ALPN-303 inhibited BAFF- and APRIL-mediated signaling in vitro in human lymphocyte assays, with significantly lower IC50 values than WT TACI-Fc and belimumab comparators. In all mouse models evaluated, administration of ALPN-303 rapidly and significantly reduced key lymphocyte subsets including plasma cells, germinal center B cells, and follicular T helper cells. ALPN-303 significantly reduced autoantibodies and sialadenitis in the spontaneous SjS model, inhibited glomerular IgG deposition in the bm12-induced model of lupus, and potently suppressed anti-dsDNA autoAbs, blood urea nitrogen levels, proteinuria, sialadenitis, kidney lesions, and renal immune complex deposition in the NZB/W lupus model. As compared to WT TACI-Fc, ALPN-303 exhibited higher serum exposure and significantly and persistently decreased titers of serum IgM, IgG, and IgA antibodies in mice and cynomolgus monkeys (Figure 1).Figure 1.ALPN-303 induces more potent suppression, as compared to WT TACI-Fc, of serum immunoglobulins following a single 9 mg/kg IV infusion (on Day 0; arrows) in female cynomolgus monkeys.Conclusion:ALPN-303 is a potent BAFF/APRIL antagonist derived from our directed evolution platform that consistently demonstrates encouraging immunomodulatory activity and efficacy in vitro and in vivo, superior in preclinical studies to anti-BAFF antibody and WT TACI-Fc. This novel Fc fusion molecule demonstrates favorable preliminary developability characteristics, including higher serum exposures and more potent immunosuppressive activities, which may enable lower clinical doses and/or longer dosing intervals than WT TACI-Fc therapeutics. ALPN-303 may thus be an attractive development candidate for the treatment of multiple autoimmune and inflammatory diseases, particularly B cell-related diseases such as SLE, SjS, and other connective tissue diseases. Preclinical development is underway to enable the initiation of clinical trials later this year.Disclosure of Interests:Stacey R. Dillon Shareholder of: Alpine Immune Sciences, Bristol Myers Squibb, Employee of: Alpine Immune Sciences, Bristol Myers Squibb, Lawrence S. Evans Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Katherine E. Lewis Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jing Yang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Mark W. Rixon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Joe Kuijper Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Dan Demonte Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Janhavi Bhandari Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Steve Levin Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Kayla Kleist Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Sherri Mudri Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Susan Bort Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Daniel Ardourel Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Michelle A. Seaberg Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Rachel Wang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Chelsea Gudgeon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Russell Sanderson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Martin F. Wolfson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jan Hillson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Stanford L. Peng Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences

2021 ◽  
Vol 8 (1) ◽  
pp. e000445
Author(s):  
Felice Rivellese ◽  
Sotiria Manou-Stathopoulou ◽  
Daniele Mauro ◽  
Katriona Goldmann ◽  
Debasish Pyne ◽  
...  

ObjectiveTo evaluate the effects of targeting Ikaros and Aiolos by cereblon modulator iberdomide on the activation and differentiation of B-cells from patients with systemic lupus erythematosus (SLE).MethodsCD19+ B-cells isolated from the peripheral blood of patients with SLE (n=41) were cultured with TLR7 ligand resiquimod ±IFNα together with iberdomide or control from day 0 (n=16). Additionally, in vitro B-cell differentiation was induced by stimulation with IL-2/IL-10/IL-15/CD40L/resiquimod with iberdomide or control, given at day 0 or at day 4. At day 5, immunoglobulins were measured by ELISA and cells analysed by flow cytometry. RNA-Seq was performed on fluorescence-activated cell-sorted CD27-IgD+ naïve-B-cells and CD20lowCD27+CD38+ plasmablasts to investigate the transcriptional consequences of iberdomide.ResultsIberdomide significantly inhibited the TLR7 and IFNα-mediated production of immunoglobulins from SLE B-cells and the production of antinuclear antibodies as well as significantly reducing the number of CD27+CD38+ plasmablasts (0.3±0.18, vehicle 1.01±0.56, p=0.011) and CD138+ plasma cells (0.12±0.06, vehicle 0.28±0.02, p=0.03). Additionally, treatment with iberdomide from day 0 significantly inhibited the differentiation of SLE B-cells into plasmablasts (6.4±13.5 vs vehicle 34.9±20.1, p=0.013) and antibody production. When given at later stages of differentiation, iberdomide did not affect the numbers of plasmablasts or the production of antibodies; however, it induced a significant modulation of gene expression involving IKZF1 and IKZF3 transcriptional programmes in both naïve B-cells and plasmablasts (400 and 461 differentially modulated genes, respectively, false discovery rate<0.05).ConclusionThese results demonstrate the relevance of Ikaros and Aiolos as therapeutic targets in SLE due to their ability to modulate B cell activation and differentiation downstream of TLR7.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2015 ◽  
Vol 75 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Sarah A Jones ◽  
Andrew E J Toh ◽  
Dragana Odobasic ◽  
Marie-Anne Virginie Oudin ◽  
Qiang Cheng ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids.MethodsWe conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice.ResultsReduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli.ConclusionsOur findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


1997 ◽  
Vol 40 (2) ◽  
pp. 306-317 ◽  
Author(s):  
Hanns-Martin Lorenz ◽  
Mathias Grünke ◽  
Thomas Hieronymus ◽  
Martin Herrmann ◽  
Almuth Kühnel ◽  
...  

RMD Open ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e001258
Author(s):  
Thomas Dörner ◽  
Franziska Szelinski ◽  
Andreia C Lino ◽  
Peter E Lipsky

Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton’s tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jaeseon Lee ◽  
Youngjae Park ◽  
Se Gwang Jang ◽  
Seung-Min Hong ◽  
Young-Seok Song ◽  
...  

ObjectiveBaricitinib, a selective inhibitor for janus kinase (JAK) 1 and JAK2, is approved for use in rheumatoid arthritis. Systemic lupus erythematosus (SLE) is recently regarded as a potential candidate targeted by JAK inhibitors because of the relationship between its pathogenesis and JAK/signal transducer and activator of transcription (STAT) pathway-mediated cytokines such as type I interferons. The objective of this study was to determine whether baricitinib could effectively ameliorate SLE using a murine modelMethodsTo investigate effects of baricitinib on various autoimmune features, especially renal involvements in SLE, eight-week-old MRL/Mp-Faslpr (MRL/lpr) mice were used as a lupus-prone animal model and treated with baricitinib for eight weeks. Immortalized podocytes and primary podocytes and B cells isolated from C57BL/6 mice were used to determine the in vitro efficacy of baricitinib.ResultsBaricitinib remarkably suppressed lupus-like phenotypes of MRL/lpr mice, such as splenomegaly, lymphadenopathy, proteinuria, and systemic autoimmunity including circulating autoantibodies and pro-inflammatory cytokines. It also modulated immune cell populations and effectively ameliorated renal inflammation, leading to the recovery of the expression of structural proteins in podocytes. According to in vitro experiments, baricitinib treatment could mitigate B cell differentiation and restore disrupted cytoskeletal structures of podocytes under inflammatory stimulation by blocking the JAK/STAT pathway.ConclusionsThe present study demonstrated that baricitinib could effectively attenuate autoimmune features including renal inflammation of lupus-prone mice by suppressing aberrant B cell activation and podocyte abnormalities. Thus, baricitinib as a selective JAK inhibitor could be a promising therapeutic candidate in the treatment of SLE.


2007 ◽  
Vol 67 (4) ◽  
pp. 450-457 ◽  
Author(s):  
A M Jacobi ◽  
D M Goldenberg ◽  
F Hiepe ◽  
A Radbruch ◽  
G R Burmester ◽  
...  

Objective:B lymphocytes have been implicated in the pathogenesis of lupus and other autoimmune diseases, resulting in the introduction of B cell-directed therapies. Epratuzumab, a humanised anti-CD22 monoclonal antibody, is currently in clinical trials, although its effects on patients’ B cells are not completely understood.Methods:This study analysed the in vivo effect of epratuzumab on peripheral B cell subsets in 12 patients with systemic lupus erythematosus, and also addressed the in vitro effects of the drug by analysing anti-immunoglobulin-induced proliferation of isolated B cells obtained from the peripheral blood of 11 additional patients with lupus and seven normal subjects.Results:Upon treatment, a pronounced reduction of CD27– B cells and CD22 surface expression on CD27– B cells was observed, suggesting that these cells, which mainly comprise naïve and transitional B cells, are preferentially targeted by epratuzumab in vivo. The results of in vitro studies indicate additional regulatory effects of the drug by reducing the enhanced activation and proliferation of anti-immunoglobulin-stimulated lupus B cells after co-incubation with CD40L or CpG. Epratuzumab inhibited the proliferation of B cells from patients with systemic lupus erythematosus but not normal B cells under all culture conditions.Conclusions:Epratuzumab preferentially modulates the exaggerated activation and proliferation of B cells from patients with lupus in contrast to normal subjects, thus suggesting that epratuzumab might offer a new therapeutic option for patients with systemic lupus erythematosus, as enhanced B cell activation is a hallmark of this disease.


1985 ◽  
Vol 161 (6) ◽  
pp. 1587-1592 ◽  
Author(s):  
P L Cohen ◽  
R G Rapoport ◽  
R A Eisenberg

The autoantibodies found in human and murine systemic lupus erythematosus (SLE) are generally directed against cells or components of cells such as nuclear antigens. This predilection may be due to the unusual immunogenicity of certain autoantigens, or to unusual patterns of antibody crossreactivity. Alternatively, the observed spectrum of reactivities may reflect the in vivo absorption of those autoantibodies directed against soluble antigens. To test whether hitherto undetected autoantibodies against serum proteins might exist in murine SLE, we developed assays that were independent of the possibility of absorption of autoantibodies by serum autoantigens; large numbers of plaque-forming cells (PFC) directed against mouse albumin and mouse transferrin were easily detected in the spleens of MRL/Mp-lpr/lpr, BXSB, and NZB mice. The secreted antibodies were relatively specific for the mouse proteins, since only limited cross-reactivity was seen with albumin and transferrins of other species in inhibition experiments. The production of these hidden antibodies could not be the result of diffuse polyclonal B cell activation, since the PFC to mouse transferrins and albumin were not always accompanied by comparable numbers of PFC against related albumins and transferrins. The results indicate that autoantibody production in murine lupus is a generalized phenomenon, not limited to the production of autoantibodies to nuclear or other cell-bound antibodies. However, the relative specificity of the autoantibodies for self-antigens indicates that diffuse polyclonal B cell activation cannot be the mechanism responsible, and argues that a selective mechanism, probably driven by antigen, accounts for production of autoantibodies in SLE.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Francesca Romana Spinelli ◽  
Cristiana Barbati ◽  
Fulvia Cecarelli ◽  
Francesca Morello ◽  
Tania Colasanti ◽  
...  

Abstract Background Circulating endothelial progenitor cells (EPCs) are biologic markers of endothelial function. In patients with systemic lupus erythematosus (SLE), the numerical reduction and functional impairment of EPCs contribute to the endothelial dysfunction. Through ex vivo and in vitro studies, we aimed at evaluating the effects of B lymphocyte stimulator (BLyS) on EPC colonies and endothelial cells and also investigating BLyS receptor expression on these cells. Methods EPCs were isolated from peripheral blood mononuclear cells (PBMC). In order to evaluate their ability to form colonies, EPCs were cultured on fibronectin-coated dishes and incubated with BlyS alone or BlyS and belimumab. Apoptosis of EPCs and endothelial cell line EA.hy926 was evaluated after 6, 12, and 24 h of incubation with BLyS and after 6 h with BLyS and belimumab. The expression of B cell activating factor-receptor (BAFF-R), B cell maturation antigen (BCMA), and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI) on EPCs and EA.hy926 was analyzed by cytofluorimetry. Results The number of EPC colonies was lower in patients than in controls. Moreover, the colonies from SLE patients were poorly organized compared to controls; the addition of belimumab restored the colony structure. Incubation with BLyS induced apoptosis of EPCs and EA.hy926 that was inhibited by the co-incubation with belimumab. BAFF-R and BCMA were expressed on both EPCs and EA.hy926, while TACI was expressed only on EPCs. Conclusions EPCs and endothelial cells preferentially express BAFF-R which could be involved in the pro-apoptotic effect of BlyS. Belimumab administration seems to restore the quantitative and qualitative changes of EPC colonies both ex vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document