scholarly journals Rickets with hypophosphatemia, hypokalemia and normal anion gap metabolic acidosis: not always an easy diagnosis

2020 ◽  
Vol 13 (1) ◽  
pp. e233350
Author(s):  
Saurav Shishir Agrawal ◽  
Chandan Kumar Mishra ◽  
Chhavi Agrawal ◽  
Partha Pratim Chakraborty

Rickets other than those associated with advanced kidney disease, isolated distal renal tubular acidosis (dRTA) and hypophosphatasia (defective tissue non-specific alkaline phosphatase) are associated with hypophosphatemia due to abnormal proximal tubular reabsorption of phosphate. dRTA, however, at times is associated with completely reversible proximal tubular dysfunction. On the other hand, severe hypophosphatemia of different aetiologies may also interfere with both distal tubular acid excretion and proximal tubular functions giving rise to transient secondary renal tubular acidosis (distal and/or proximal). Hypophosphatemia and non-anion gap metabolic acidosis thus pose a diagnostic challenge occasionally. A definitive diagnosis and an appropriate management of the primary defect results in complete reversal of the secondary abnormality. A child with vitamin D resistant rickets was thoroughly evaluated and found to have primary dRTA with secondary proximal tubular dysfunction in the form of phosphaturia and low molecular weight proteinuria. The child was treated only with oral potassium citrate. A complete clinical, biochemical and radiological improvement was noticed in follow-up.

2020 ◽  
pp. 5104-5111
Author(s):  
John A. Sayer ◽  
Fiona E. Karet

Renal tubular acidosis (RTA) arises when the kidneys either fail to excrete sufficient acid, or are unable to conserve bicarbonate, with both circumstances leading to metabolic acidosis of varying severity with altered serum potassium. Proximal and distal types of RTA can be differentiated according to which nephron segment is malfunctioning. Proximal RTA: aetiology and diagnosis—the condition may be (1) secondary to generalized proximal tubular dysfunction (part of the renal Fanconi’s syndrome), or rarely (2) due to an inherited mutation of a single transporter (NBC1) located at the basolateral surface of the proximal tubular epithelium. The combination of normal anion gap acidosis with other features of proximal tubular dysfunction such as renal phosphate wasting (and hypophosphataemia), renal glycosuria, hypouricaemia (due to uricosuria), aminoaciduria, microalbuminuria, and other low molecular weight proteinuria suggests the diagnosis. Management—this requires large quantities of oral alkali with (in most cases) potassium supplements to prevent severe hypokalaemia. Distal RTA: aetiology/diagnosis—two main classes are differentiated by whether (1) the acid-handling cells in the collecting ducts are themselves functioning inadequately, in which case there is associated hypokalaemia (this is ‘classic’ distal RTA); or (2) the main abnormality is of the salt-handling principal cells in the same nephron segment, in which case hyperkalaemia occurs and the acidosis is a secondary phenomenon—this is hyperkalaemic distal RTA. The combination of normal anion gap acidosis with a urine pH higher than 5.5 suggests classic distal RTA. Management—(1) classic distal RTA—1 to 3 mg/kg per day of oral alkali; (2) hyperkalaemic distal RTA—treatment is with sodium bicarbonate, but fludrocortisone and/or potassium-lowering measures may also be necessary. Precipitating drugs should be stopped.


2019 ◽  
Vol 44 (5) ◽  
pp. 1294-1299 ◽  
Author(s):  
Marius Sidler ◽  
Nilufar Mohebbi ◽  
Ewout J. Hoorn ◽  
Carsten A. Wagner

Background: Distal renal tubular acidosis (dRTA) can be inherited or acquired. Case Presentation: Here, we describe the case of a 45-year-old female patient with non-anion gap metabolic acidosis, hypokalemia, and alkaline urine. She had a history of rheumatoid arthritis and kidney stones and failed to acidify urine upon the fludrocortisone and furosemide test. Therefore, the diagnosis of dRTA secondary to an autoimmune disease was made. A kidney biopsy was examined for markers of acid-secretory intercalated cells. Surprisingly, no obvious difference in the relative number of acid-secretory intercalated cells or in the distribution of major proteins involved in acid secretion was found. Furthermore, increasing doses of potassium citrate failed to correct the hypokalemia and acidosis. Since these findings were rather atypical for autoimmune dRTA, alternative causes of her hypokalemia and metabolic acidosis were sought. The patient was found to chronically consume laxatives, which can also cause kidney stones and may result in a false-positive urinary acidification test. Conclusion: Chronic laxative abuse may mimic dRTA and should therefore be considered in unexplained hypokalemia with non-anion gap metabolic acidosis.


CJEM ◽  
2013 ◽  
Vol 15 (04) ◽  
pp. 249-252 ◽  
Author(s):  
Jon Tuchscherer ◽  
Habib Rehman

ABSTRACT Toluene sniffing, frequently described under the generic category of “glue sniffing,” is a potential cause of normal anion gap metabolic acidosis due to distal renal tubular acidosis. Urine anion gap is used to diagnose metabolic acidosis of a normal anion gap variety; however, pitfalls exist when using urine anion gap in the setting of toluene sniffing. We present the case of a young woman who had a normal anion gap metabolic acidosis due to toluene sniffing and an unexpectedly low urine anion gap. In such a scenario, the urine anion gap will underestimate the rate of ammonia excretion when the conjugate bases of acids other than HCl are excreted in large quantities. Estimation of the urine osmolal gap will provide a more accurate ammonia excretion rate in these circumstances. The challenges in interpretation of the urine anion gap and ammonia excretion in the setting of distal renal tubular acidosis due to toluene toxicity are discussed.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yun Qing Koh ◽  
Kian Ming Jeremy Hoe ◽  
Timothy Peng Lim Quek

Abstract Introduction: Trimethoprim-sulfamethoxazole (TMP-SMX) is a commonly used antibiotic. We present a case of severe hyponatremia and Type 4 renal tubular acidosis (functional hypoaldosteronism) in a patient treated with TMP-SMX. Clinical Case: A 62 year old gentleman with hypertension, dyslipidemia and a surgically repaired abdominal aortic aneurysm developed an aortic graft infection. He was admitted to hospital for acute right lower limb ischemia with embolic phenomena, and underwent surgical graft explantation. He required multiple courses of antibiotics post operatively. He was initially referred to Endocrinology for severe hyponatremia, deemed likely to be from a salt losing nephropathy secondary to polymyxin. Thyroid function and morning cortisol levels were normal. He was managed with intravenous hypertonic saline and oral salt tablets. The hyponatraemia resolved a week after polymyxin was stopped. Intravenous TMP-SMX was commenced the next day at 240 mg BD. A week later, the hyponatremia recurred, with concomitant hyperkalemia and a normal anion gap metabolic acidosis. The serum sodium was 126 mmol/L (reference interval (RI) 135-145) and the serum osmolality 275 mmol/kg (RI 275- 305). Urine studies showed a high urinary sodium (154 mmol/L) and osmolality (481 mmol/kg), consistent with renal salt wasting. The serum potassium rose to a peak of 6.1 mmol/L (RI 3.5 - 5.0), with a normal anion gap metabolic acidosis (bicarbonate 17 mmol/L (RI 21 – 31)). A paired urine pH of 8 pointed to an inability to acidify the urine. Given the clinical course and laboratory investigations, the diagnosis of TMP-associated hyponatremia and Type 4 RTA was made. Oral resonium was started to correct hyperkalemia, with a combination of oral sodium chloride and sodium bicarbonate used to treat the hyponatremia and metabolic acidosis. Fludrocortisone was not used given the concerns of causing hypertension in a patient with a diseased aortic graft. The dose of TMP-SMX was gradually reduced with improvement of the acid-base and electrolyte abnormalities, lending weight to our diagnosis. After the dose of the TMP-SMX was reduced to 80 mg BD, the hyperkalemia and metabolic acidosis resolved. The oral sodium chloride and sodium bicarbonate were gradually tailed off and stopped after cessation of the TMP-SMX. Clinical Lesson: Trimethoprim blocks the epithelial sodium channel (ENaC) of the principal cells in the terminal portion of the nephron, similar to potassium sparing diuretics like amiloride and triampterene. The resulting hyponatremia, hyperkalemia and metabolic acidosis can be life threatening. Therefore, monitoring of electrolytes and acid base status is important, particularly in susceptible patients or in those where a high dose of trimethoprim is required.


1991 ◽  
Vol 1 (8) ◽  
pp. 1019-1027 ◽  
Author(s):  
E J Carlisle ◽  
S M Donnelly ◽  
S Vasuvattakul ◽  
K S Kamel ◽  
S Tobe ◽  
...  

An index case is presented to introduce the subject of the acid-base and electrolyte abnormalities resulting from toluene abuse. These include metabolic acidosis associated with a normal anion gap and excessive loss of sodium and potassium in the urine. The major question addressed is, what is the basis for the metabolic acidosis? Overproduction of hippuric acid resulting from the metabolism of toluene plays a more important role in the genesis of the metabolic acidosis than was previously believed. This conclusion is supported by the observation that the rate of excretion of ammonium was not low during metabolic acidosis in six of eight patients, suggesting that distal renal tubular acidosis was not an important acid-base abnormality in most cases where ammonium was measured. The excretion of hippurate in the urine unmatched by ammonium also mandates an enhanced rate of excretion of the cations, sodium and potassium. The loss of sodium causes extracellular fluid volume contraction and a fall in the glomerular filtration rate, which may transform the normal anion gap type of metabolic acidosis into one with a high anion gap (accumulation of hippurate and other anions). Continuing loss of potassium in the urine leads to hypokalemia. An understanding of the metabolism of toluene provides the basis for the unusual biochemical abnormalities seen with abuse of this solvent.


2021 ◽  
pp. 1-6
Author(s):  
Viola D’Ambrosio ◽  
Alessia Azzarà ◽  
Eugenio Sangiorgi ◽  
Fiorella Gurrieri ◽  
Bernhard Hess ◽  
...  

<b><i>Background:</i></b> Distal renal tubular acidosis (dRTA) is characterized by an impairment of urinary acidification resulting in metabolic acidosis, hypokalemia, and inappropriately elevated urine pH. If not treated, this chronic condition eventually leads to nephrocalcinosis, nephrolithiasis, impaired renal function, and bone demineralization. dRTA is a well-defined entity that can be diagnosed by genetic testing of 5 genes known to be disease-causative. Incomplete dRTA (idRTA) is defined as impaired urinary acidification that does not lead to overt metabolic acidosis and therefore can be diagnosed if patients fail to adequately acidify urine after an ammonium chloride (NH<sub>4</sub>Cl) challenge or furosemide and fludrocortisone test. It is still uncertain whether idRTA represents a distinct entity or is part of the dRTA spectrum and whether it is caused by mutations in the same genes of overt dRTA. <b><i>Methods:</i></b> In this cross-sectional study, we investigated a group of 22 stone formers whose clinical features were suspicious of idRTA. They underwent an NH<sub>4</sub>Cl challenge and were found to have impaired urinary acidification ability. These patients were then analyzed by genetic testing with sequencing of 5 genes: <i>SLC4A1</i>, <i>ATP6V1B1</i>, <i>ATP6V0A4</i>, <i>FOXI1</i>, and <i>WDR72</i>. <b><i>Results:</i></b> Two unrelated individuals were found to have two different variants in <i>SLC4A1</i> that had never been described before. <b><i>Conclusions:</i></b> Our results suggest the involvement of other genes or nongenetic tubular dysfunction in the pathogenesis of idRTA in stone formers. However, genetic testing may represent a cost-effective tool to recognize, treat, and prevent complications in these patients.


PEDIATRICS ◽  
1986 ◽  
Vol 78 (2) ◽  
pp. 295-297
Author(s):  
Joe Black ◽  
F. Bruder Stapleton ◽  
Shane Roy ◽  
Jewell Ward ◽  
H. Norman Noe

Renal calculi have rarely been cited as a major manifestation of cystinosis. We report a case history of a child with multiple urate calculi and a calcium oxalate stone resulting from proximal tubular dysfunction that was not associated with bicarbonate wastage.


Author(s):  
Nadia Mebrouk ◽  
Rachid Abilkassem ◽  
Aomar Agadr

Primary distal renal tubular acidosis (dRTA) is a rare genetic disease characterized by distal tubular dysfunction leading to metabolic acidosis and alkaline urine.  It is associated with impaired acid excretion by the intercalated cells in the renal collecting duct.  dRTA is developed during the first months of life and the main clinical and biologic features are failure to thrive, vomiting, dehydration, anorexia, hyperchloremic non-anion gap metabolic acidosis, hypocitraturia, hypercalciuria and nephrocalcinosis.  The disease is caused by defects in genes involved in urinary distal acidification: ATP6V0A4 and ATP6V1B1 for the recessive form, and SLC4A1 for the dominant form.  Some dRTA cases due to recessive gene mutations are associated with hearing impairment. We report the case of two siblings with dRTA, and early-onset SNHL, due to ATP6V0A4 mutations, and whose parents are heterozygous carriers of ATP6V0A4 mutations.


Sign in / Sign up

Export Citation Format

Share Document