scholarly journals Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers

Gut ◽  
2021 ◽  
pp. gutjnl-2019-320462
Author(s):  
Peter Georgeson ◽  
Bernard J Pope ◽  
Christophe Rosty ◽  
Mark Clendenning ◽  
Khalid Mahmood ◽  
...  

ObjectiveGermline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers.DesignWhole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers.ResultsThe combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC’s signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls.ConclusionAssessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.

Author(s):  
Peter Georgeson ◽  
Bernard J. Pope ◽  
Christophe Rosty ◽  
Mark Clendenning ◽  
Khalid Mahmood ◽  
...  

ABSTRACTObjectiveGermline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers.DesignWhole exome sequencing of formalin-fixed paraffin embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers.ResultsThe combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC’s signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10−5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99), however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls.ConclusionAssessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.SIGNIFICANCE OF THE STUDYWhat is already known about this subject?Identifying carriers of pathogenic variants (PVs) in moderate/high-risk colorectal cancer (CRC) and polyposis susceptibility genes has clinical relevance for diagnosis, targeted screening and prevention strategies, prognosis, and treatment options. However, challenges still remain in the identification of carriers and the classification of rare variants in these genes.Previous studies have identified tumour mutational signatures that result from defective DNA repair including DNA mismatch repair (MMR) deficiency and base excision repair defects, DNA repair mechanisms that underlie the common hereditary CRC and polyposis syndromes but their diagnostic utility in CRC is unknown.What are the new findings?Single base substitution (SBS)-related mutational signatures derived from whole exome sequencing of formalin-fixed paraffin embedded (FFPE)-derived CRC tissue DNA can effectively discriminate CRCs that developed in biallelic MUTYH PV carriers from CRC-affected non-carriers.CRCs that develop in MMR PV carriers (Lynch syndrome) can be effectively differentiated from sporadic MMR-proficient CRC by a combination of indel (ID) signatures, but the SBS and ID tumour mutational signatures are less effective at discriminating Lynch syndrome-related CRC from sporadic MMR-deficient CRC resulting from MLH1 gene promoter hypermethylation.The SBS and ID mutational signatures associated with biallelic MUTYH PV carriers and MMR PV carriers are robust to changes in experimental settings.We demonstrate the optimal experimental settings for calculating mutational signatures and define thresholds that optimise sensitivity and specificity for classifying CRC aetiology as hereditary or non-hereditary.How might it impact on clinical practice in the foreseeable future?Deriving SBS- and ID-related mutational signatures from CRCs can identify carriers of PVs in hereditary CRC and polyposis susceptibility genes.The application of mutational signatures has the potential to improve the diagnosis of hereditary CRC and aid in variant classification, leading to improved clinical management and CRC prevention.


2012 ◽  
Vol 28 (2) ◽  
pp. 473-480 ◽  
Author(s):  
TAKASHI KUNO ◽  
NAGAHIDE MATSUBARA ◽  
SATOSHI TSUDA ◽  
MASAYOSHI KOBAYASHI ◽  
MIE HAMANAKA ◽  
...  

2011 ◽  
Vol 47 (7) ◽  
pp. 1046-1055 ◽  
Author(s):  
Monika Morak ◽  
Trisari Massdorf ◽  
Helena Sykora ◽  
Martina Kerscher ◽  
Elke Holinski-Feder

2005 ◽  
Vol 77 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Susan M. Farrington ◽  
Albert Tenesa ◽  
Rebecca Barnetson ◽  
Alice Wiltshire ◽  
James Prendergast ◽  
...  

2021 ◽  
Author(s):  
Philip S Robinson ◽  
Laura E. Thomas ◽  
Federico Abascal ◽  
Hyunchul Jung ◽  
Luke Harvey ◽  
...  

Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequenced normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 5-fold in all individuals, except for one showing a 33-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C>A changes. Different mutation rates and signatures between individuals were likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.


2015 ◽  
Vol 47 (6) ◽  
pp. 668-671 ◽  
Author(s):  
Robbert D A Weren ◽  
Marjolijn J L Ligtenberg ◽  
C Marleen Kets ◽  
Richarda M de Voer ◽  
Eugène T P Verwiel ◽  
...  

2008 ◽  
Vol 4 (2) ◽  
pp. 63-71 ◽  
Author(s):  
Mohammad Shekari ◽  
Ranbir Chander Sobti ◽  
Dor Mohammad Kordi Tamandani ◽  
Keyanoosh Malekzadeh ◽  
Pushpinder Kaur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document