digenic inheritance
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 42)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Somya Srivastava ◽  
Rani Manisha ◽  
Aradhana Dwivedi ◽  
Harshita Agarwal ◽  
Deepti Saxena ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 1217
Author(s):  
Kuan-Yu Chu ◽  
Yin-Lin Wang ◽  
Yu-Ren Chou ◽  
Jung-Tsu Chen ◽  
Yi-Ping Wang ◽  
...  

Familial tooth agenesis (FTA), distinguished by developmental failure of selected teeth, is one of the most prevalent craniofacial anomalies in humans. Mutations in genes involved in WNT/β-catenin signaling, including AXIN2 WNT10A, WNT10B, LRP6, and KREMEN1, are known to cause FTA. However, mutational interactions among these genes have not been fully explored. In this study, we characterized four FTA kindreds with LRP6 pathogenic mutations: p.(Gln1252*), p.(Met168Arg), p.(Ala754Pro), and p.(Asn1075Ser). The three missense mutations were predicted to cause structural destabilization of the LRP6 protein. Two probands carrying both an LRP6 mutant allele and a WNT10A variant exhibited more severe phenotypes, suggesting mutational synergism or digenic inheritance. Biallelic LRP6 mutations in a patient with many missing teeth further supported the dose-dependence of LRP6-associated FTA. Analysis of 21 FTA cases with 15 different LRP6 loss-of-function mutations revealed high heterogeneity of disease severity and a distinctive pattern of missing teeth, with maxillary canines being frequently affected. We hypothesized that various combinations of sequence variants in WNT-related genes can modulate WNT signaling activities during tooth development and cause a wide spectrum of tooth agenesis severity, which highlights the importance of exome/genome analysis for the genetic diagnosis of FTA in this era of precision medicine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erica A. Steen ◽  
Michelle L. Hermiston ◽  
Kim E. Nichols ◽  
Lauren K. Meyer

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by the inability to properly terminate an immune response. Familial HLH (FHLH) and related immune dysregulation syndromes are associated with mutations in the genes PRF1, UNC13D, STX11, STXBP2, LYST, AP3B1, and RAB27A, all of which are required for the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. Loss-of-function mutations in these genes render the cytotoxicity pathway ineffective, thereby failing to eradicate immune stimuli, such as infectious pathogens or malignant cells. The resulting persistent immune system stimulation drives hypercytokinemia, ultimately leading to severe tissue inflammation and end-organ damage. Traditionally, a diagnosis of FHLH requires the identification of biallelic loss-of-function mutations in one of these degranulation pathway genes. However, this narrow definition fails to encompass patients with other genetic mechanisms underlying degranulation pathway dysfunction. In particular, mounting clinical evidence supports a potential digenic mode of inheritance of FHLH in which single loss-of-function mutations in two different degranulation pathway genes cooperate to impair pathway activity. Here, we review the functions of the FHLH-associated genes within the degranulation pathway and summarize clinical evidence supporting a model in which cumulative defects along this mechanistic pathway may underlie HLH.


Author(s):  
Stefania Magri ◽  
Lorenzo Nanetti ◽  
Cinzia Gellera ◽  
Elisa Sarto ◽  
Elena Rizzo ◽  
...  

Author(s):  
Hager Jaouadi ◽  
Sonia Chabrak ◽  
Saida LAHBIB ◽  
Sonia Abdelhak ◽  
Stéphane Zaffran

Catecholaminergic Polymorphic Ventricular Tachycardia is a life-threatening disorder. The clinical diagnosis is challenging owing to the absence of electrocardiogram and overt structural heart abnormalities in the majority of patients. Approximately 35% of cases remain without a genetic etiology. Here, we identified two genes as a novel promising candidate for CPVT.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Poornima Vijayan ◽  
Saidah Hack ◽  
Tony Yao ◽  
Mohammad Azfar Qureshi ◽  
Andrew D. Paterson ◽  
...  

Abstract Background Focal and segmental glomerulosclerosis (FSGS) is a histologic pattern of injury that characterizes a wide spectrum of diseases. Many genetic causes have been identified in FSGS but even in families with comprehensive testing, a significant proportion remain unexplained. Methods In a family with adult-onset autosomal dominant FSGS, linkage analysis was performed in 11 family members followed by whole exome sequencing (WES) in 3 affected relatives to identify candidate genes. Results Pathogenic variants in known nephropathy genes were excluded. Subsequently, linkage analysis was performed and narrowed the disease gene(s) to within 3% of the genome. WES identified 5 heterozygous rare variants, which were sequenced in 11 relatives where DNA was available. Two of these variants, in LAMA2 and LOXL4, remained as candidates after segregation analysis and encode extracellular matrix proteins of the glomerulus. Renal biopsies showed classic segmental sclerosis/hyalinosis lesion on a background of mild mesangial hypercellularity. Examination of basement membranes with electron microscopy showed regions of dense mesangial matrix in one individual and wider glomerular basement membrane (GBM) thickness in two individuals compared to historic control averages. Conclusions Based on our findings, we postulate that the additive effect of digenic inheritance of heterozygous variants in LAMA2 and LOXL4 leads to adult-onset FSGS. Limitations to our study includes the absence of functional characterization to support pathogenicity. Alternatively, identification of additional FSGS cases with suspected deleterious variants in LAMA2 and LOXL4 will provide more evidence for disease causality. Thus, our report will be of benefit to the renal community as sequencing in renal disease becomes more widespread.


2021 ◽  
pp. 1-7
Author(s):  
Qin Zhang ◽  
Tiantian Qin ◽  
Wenmu Hu ◽  
Muhammad Usman Janjua ◽  
Ping Jin

<b><i>Objectives:</i></b> Nonsyndromic hearing loss (NSHL) is the most frequent type of hereditary hearing impairment. Here, we explored the underlying genetic cause of NSHL in a three-generation family using whole-exome sequencing. The proband had concomitant NSHL and rare 48,XXYY Klinefelter syndrome. <b><i>Material and Methods:</i></b> Genomic DNA was extracted from the peripheral blood of the proband and their family members. Sanger sequencing and pedigree verification were performed on the pathogenic variants filtered by whole-exome sequencing. The function of the variants was analyzed using bioinformatics software. <b><i>Results:</i></b> The proband was digenic heterozygous for p.V37I in the <i>GJB2</i> gene and p.L347I in the <i>MYO7A</i> gene. The proband’s mother had normal hearing and did not have any variant. The proband’s father and uncle both had NSHL and were compound for the <i>GJB2</i> p.V37I and <i>MYO7A</i> p.L347I variants, thus indicating a possible <i>GJB2/MYO7A</i> digenic inheritance of NSHL. 48,XXYY Klinefelter syndrome was discovered in the proband after the karyotype analysis, while his parents both had normal karyotypes. <b><i>Conclusions:</i></b> Our findings reported a putative <i>GJB2/MYO7A</i> digenic inheritance form of hearing loss, expanding the genotype and phenotype spectrum of NSHL. In addition, this is the first report of concomitant NSHL and 48,XXYY syndrome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Yang ◽  
Na Pu ◽  
Xiao-Yao Li ◽  
Xiao-Lei Shi ◽  
Wei-Wei Chen ◽  
...  

The etiology of hypertriglyceridemia (HTG) and acute pancreatitis (AP) is complex. Herein, we dissected the underlying etiology in a patient with HTG and AP. The patient had a 20-year history of heavy alcohol consumption and an 8-year history of mild HTG. He was hospitalized for alcohol-triggered AP, with a plasma triglyceride (TG) level up to 21.4 mmol/L. A temporary rise in post-heparin LPL concentration (1.5–2.5 times of controls) was noted during the early days of AP whilst LPL activity was consistently low (50∼70% of controls). His TG level rapidly decreased to normal in response to treatment, and remained normal to borderline high during a ∼3-year follow-up period during which he had abstained completely from alcohol. Sequencing of the five primary HTG genes (i.e., LPL, APOC2, APOA5, GPIHBP1 and LMF1) identified two heterozygous variants. One was the common APOA5 c.553G &gt; T (p.Gly185Cys) variant, which has been previously associated with altered TG levels as well as HTG-induced acute pancreatitis (HTG-AP). The other was a rare variant in the LPL gene, c.756T &gt; G (p.Ile252Met), which was predicted to be likely pathogenic and found experimentally to cause a 40% loss of LPL activity without affecting either protein synthesis or secretion. We provide evidence that both a gene-gene interaction (between the common APOA5 variant and the rare LPL variant) and a gene-environment interaction (between alcohol and digenic inheritance) might have contributed to the development of mild HTG and alcohol-triggered AP in the patient, thereby improving our understanding of the complex etiology of HTG and HTG-AP.


Sign in / Sign up

Export Citation Format

Share Document