scholarly journals 291 Frequency of pathogenic mutations and prognostic impact of germline gene panel testing in patients with primary epithelial ovarian cancer

Author(s):  
B Ataseven ◽  
P Harter ◽  
K Rhiem ◽  
F Heitz ◽  
S Schneider ◽  
...  
2016 ◽  
Vol 34 (3_suppl) ◽  
pp. 261-261
Author(s):  
Nimmi S. Kapoor ◽  
Jennifer Swisher ◽  
Rachel E. McFarland ◽  
Mychael Patrick ◽  
Lisa D. Curcio

261 Background: Recently, genetic testing for hereditary cancer syndromes has seen numerous advances in testing spectrum, capability, and efficiency. This may have important implications for cancer survivors and their families. The purpose of this study is to evaluate the impact of reflex genetic testing with newer multi-gene panels on patients with prior negative BRCA1/2 tests. Methods: Data was collected retrospectively from patients who underwent multi-gene panel testing at one of three sites from a single institution between 8/2013-6/2015. Those with a personal history of breast or ovarian cancer and a prior negative BRCA1/2 test were included. Results: Of 914 patients who underwent multi-gene panel tests, 187 met study inclusion criteria. Ten patients (5.3%) were found to carry 11 pathogenic mutations, including 6 patients with mutations in CHEK2, 2 patients with mutations in PTEN, and 1 patient each with mutations in the following genes: BARD1, NF1, and RAD51C. One patient had two pathogenic mutations identified—CHEK2 and BARD1. Of 10 patients with mutations, 9 had a personal history of breast cancer diagnosed at a median age of 43 (range 35-52) and 1 had ovarian cancer diagnosed at age 65. A majority of mutation carriers underwent panel testing years after their cancer diagnosis (median 6 years, range 0.5-32 years) and none with delayed testing had undergone prophylactic contralateral mastectomy prior to the discovery of their gene mutation. All patients with mutations had a family history of at least one cancer, with most having a variety of cancer diagnoses in multiple relatives. Positive panel testing results altered clinical management in most patients, including addition of breast MRI, colonoscopy, or thyroid ultrasound depending on the gene mutation. After discovery of a PTEN mutation 19 years after her initial cancer treatment, one woman underwent bilateral prophylactic mastectomy and was found to have occult ductal carcinoma in situ. Conclusions: Cancer survivorship must incorporate advances in technology that may be beneficial even years after treatment has ended. Multi-gene panel testing can be applied in survivorship settings as a useful tool to guide screening recommendations.


2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 1513-1513
Author(s):  
Leif W. Ellisen ◽  
Allison W. Kurian ◽  
Andrea J Desmond ◽  
Meredith Mills ◽  
Stephen E Lincoln ◽  
...  

2018 ◽  
Vol 93 (3) ◽  
pp. 595-602 ◽  
Author(s):  
L.M. Pelttari ◽  
H. Shimelis ◽  
H. Toiminen ◽  
A. Kvist ◽  
T. Törngren ◽  
...  

2019 ◽  
Vol 30 ◽  
pp. iii42-iii43
Author(s):  
B. Adamo ◽  
L. Moreno ◽  
L. Gaba ◽  
M. Vidal ◽  
T. Pascual ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110279
Author(s):  
Brooke E. Sanders ◽  
Lisa Ku ◽  
Paul Walker ◽  
Benjamin G. Bitler

The clinical use of molecular tumor profiling (MTP) is expanding and there is an increasing use of MTP data to manage patient care. At the University of Colorado, 18 patients were diagnosed with primary serous ovarian cancer between 9/2015 and 6/2019 and consented for banking and analysis of tumor, ascites and plasma. All 18 patients had tumor and plasma samples that were sent for MTP, and 13 of 18 patients additionally had ascites collected and sent for MTP. 50-gene panel testing and BRCA testing were performed on primary tumor. BRCA genetic variants were more likely to be identified in plasma as compared to ascites or tumor, though not statistically significant ( P = 0.17). Co-occurring genetic variants between plasma and ascites were less common in comparison to co-occurring variants between tumor and plasma or tumor and ascites, though not statistically significant ( P = 0.68). Variants in KDR (VEGFR2) and TP53 were most likely to be conserved across all 3 biocompartments. Mutant allele frequencies (MAF) of individual genetic variants varied across biocompartments, though tended to be highest in the tumor, followed by ascites.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


Sign in / Sign up

Export Citation Format

Share Document