ID: 45: EVALUATION OF CELLULAR MECHANISMS BY WHICH CINOBUFOTALIN INHIBITS OVARIAN CANCER CELL LINES FUNCTION

2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.

2020 ◽  
Vol 168 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hui Zhao ◽  
Aixia Wang ◽  
Zhiwei Zhang

Abstract Ovarian cancer has ranked as one of the leading causes of female morbidity and mortality around the world, which affects ∼239,000 patients and causes 152,000 deaths every year. Chemotherapeutic resistance of ovarian cancer remains a devastating actuality in clinic. The aberrant upregulation of long non-coding RNA succinate dehydrogenase complex flavoprotein subunit A pseudogene 1 (lncRNA SDHAP1) in the Paclitaxel (PTX)-resistant ovarian cancer cell lines has been reported. However, studies focussed on SDHAP1 in its regulatory function of chemotherapeutic resistance in ovarian cancer are limited, and the detailed mechanisms remain unclear. In this study, we demonstrated that SDHAP1 was upregulated in PTX-resistant SKOV3 and Hey-8 ovarian cancer cell lines while the level of miR-4465 was downregulated. Knocking-down SDHAP1 induced re-acquirement of chemo-sensitivity to PTX in ovarian cancer cells in vitro. Mechanically, SDHAP1 upregulated the expression of EIF4G2 by sponging miR-4465 and thus facilitated the PTX-induced apoptosis in ovarian cancer cells. The regulation network involving SDHAP1, miR-4465 and EIF4G2 could be a potential therapy target for the PTX-resistant ovarian cancer.


Author(s):  
Jillian Hurst ◽  
Nisha Mendpara ◽  
Shelley Hooks

AbstractRegulator of G-protein signalling (RGS)2 proteins critically regulate signalling cascades initiated by G-protein coupled receptors (GPCRs) by accelerating the deactivation of heterotrimeric G-proteins. Lysophosphatidic acid (LPA) is the predominant growth factor that drives the progression of ovarian cancer by activating specific GPCRs and G-proteins expressed in ovarian cancer cells. We have recently reported that RGS proteins endogenously expressed in SKOV-3 ovarian cancer cells dramatically attenuate LPA stimulated cell signalling. The goal of this study was twofold: first, to identify candidate RGS proteins expressed in SKOV-3 cells that may account for the reported negative regulation of G-protein signalling, and second, to determine if these RGS protein transcripts are differentially expressed among commonly utilized ovarian cancer cell lines and non-cancerous ovarian cell lines. Reverse transcriptase-PCR was performed to determine transcript expression of 22 major RGS subtypes in RNA isolated from SKOV-3, OVCAR-3 and Caov-3 ovarian cancer cell lines and non-cancerous immortalized ovarian surface epithelial (IOSE) cells. Fifteen RGS transcripts were detected in SKOV-3 cell lines. To compare the relative expression levels in these cell lines, quantitative real time RT-PCR was performed on select transcripts. RGS19/GAIP was expressed at similar levels in all four cell lines, while RGS2 transcript was detected at levels slightly lower in ovarian cancer cells as compared to IOSE cells. RGS4 and RGS6 transcripts were expressed at dramatically different levels in ovarian cancer cell lines as compared to IOSE cells. RGS4 transcript was detected in IOSE at levels several thousand fold higher than its expression level in ovarian cancer cells lines, while RGS6 transcript was expressed fivefold higher in SKOV-3 cells as compared to IOSE cells, and over a thousand fold higher in OVCAR-3 and Caov-3 cells as compared to IOSE cells. Functional studies of RGS 2, 6, and 19/GAIP were performed by measuring their effects on LPA stimulated production of inositol phosphates. In COS-7 cells expressing individual exogenous LPA receptors, RGS2 and RSG19/GAIP attenuated signalling initiated by LPA1, LPA2, or LPA3, while RGS6 only inhibited signalling initiated by LPA2 receptors. In SKOV-3 ovarian cancer cells, RGS2 but not RGS6 or RGS19/GAIP, inhibited LPA stimulated inositol phosphate production. In contrast, in CAOV-3 cells RGS19/GAIP strongly attenuated LPA signalling. Thus, multiple RGS proteins are expressed at significantly different levels in cells derived from cancerous and normal ovarian cells and at least two candidate RGS transcripts have been identified to account for the reported regulation of LPA signalling pathways in ovarian cancer cells.


2004 ◽  
pp. 141-149 ◽  
Author(s):  
C Grundker ◽  
L Schlotawa ◽  
V Viereck ◽  
N Eicke ◽  
A Horst ◽  
...  

BACKGROUND: The majority of human endometrial and ovarian cancer cell lines express receptors for GnRH. Their proliferation is time- and dose-dependently reduced by GnRH-I and its superagonistic analogues. Recently, we have demonstrated that, in human endometrial and ovarian cancer cell lines except for the ovarian cancer cell line EFO-27, the GnRH-I antagonist cetrorelix has antiproliferative effects comparable to those of GnRH-I agonists, indicating that the dichotomy between GnRH-I agonists and antagonists might not apply to the GnRH system in cancer cells. We were also able to show that the proliferation of human endometrial and ovarian cancer cells was dose- and time-dependently reduced by GnRH-II to a greater extent than by GnRH-I agonists. OBJECTIVE: In this study we have assessed whether or not the antiproliferative effects of the GnRH-I antagonist cetrorelix in endometrial and ovarian cancer cells are mediated through the GnRH-I receptor. METHODS: We analysed the antiproliferative effects of the GnRH-I agonist triptorelin, the GnRH-I antagonist cetrorelix and GnRH-II in a panel of endometrial and ovarian cancer cell lines expressing GnRH-I receptors, in the SK-OV-3 ovarian cancer cell line that does not express GnRH-I receptors, and in four GnRH-I receptor positive GnRH-I receptor knockout cell lines. RESULTS: We found that, after knockout of the GnRH-I receptor, the antiproliferative effects of the GnRH-I agonist triptorelin were abrogated, whereas those of the GnRH-I antagonist cetrorelix and of GnRH-II persisted. CONCLUSIONS: These data suggest that, in endometrial and ovarian cancer cells, the antiproliferative effects of cetrorelix and of GnRH-II are not mediated through the GnRH-I receptor.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1553
Author(s):  
Jung-A Choi ◽  
Hyunja Kwon ◽  
Hanbyoul Cho ◽  
Joon-Yong Chung ◽  
Stephen M. Hewitt ◽  
...  

Aldehyde dehydrogenase 1 family member A2 (ALDH1A2) is a rate-limiting enzyme involved in cellular retinoic acid synthesis. However, its functional role in ovarian cancer remains elusive. Here, we found that ALDH1A2 was the most prominently downregulated gene among ALDH family members in ovarian cancer cells, according to complementary DNA microarray data. Low ALDH1A2 expression was associated with unfavorable prognosis and shorter disease-free and overall survival for ovarian cancer patients. Notably, hypermethylation of ALDH1A2 was significantly higher in ovarian cancer cell lines when compared to that in immortalized human ovarian surface epithelial cell lines. ALDH1A2 expression was restored in various ovarian cancer cell lines after treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Furthermore, silencing DNA methyltransferase 1 (DNMT1) or 3B (DNMT3B) restored ALDH1A2 expression in ovarian cancer cell lines. Functional studies revealed that forced ALDH1A2 expression significantly impaired the proliferation of ovarian cancer cells and their invasive activity. To the best of our knowledge, this is the first study to show that ALDH1A2 expression is regulated by the epigenetic regulation of DNMTs, and subsequently that it might act as a tumor suppressor in ovarian cancer, further suggesting that enhancing ALDH1A2-linked signaling might provide new opportunities for therapeutic intervention in ovarian cancer.


2019 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
Somayeh Hashemi-Sheikhshabani ◽  
Zeinab Amini-Farsani ◽  
Mehdi Shamsara ◽  
Zahra Sajadpoor ◽  
Mohammad Hossein Sangtarash ◽  
...  

Background and aims: Platinum resistance has been one of the most important problems in the management of ovarian cancer. The effects of various chemotherapeutic agents are limited in patients with platinum resistance. Therefore, developing new anticancer drugs that can improve the effect of currently used cytostatics is critical. The current study investigated the effects of valproic acid (VPA) alone and in combination with cisplatin on ovarian cancer cells. Methods: In this experimental study, the human ovarian cancer cell lines (A2780-S and A2780-CP) were grown in RPMI-1640 medium in appropriate culture conditions. The cells were treated with various concentrations of cisplatin (0.15-400 µg/mL) or VPA (10-2000 µg/mL) and were incubated for 24, 48, and 72 hours. Moreover, A2780 cells were co-treated with different concentrations of cisplatin and VPA for 48 hours. Afterward, cell viability was investigated using MTT assay. GraphPad Prism statistical software was used for the data analysis and ANOVA and Duncan’s test were conducted. Results: A dose- and time-dependent reduction was observed in cell viability following the treatment with cisplatin or VPA. Moreover, cotreatment of the A2780 cells with cisplatin and VPA resulted in a significantly greater inhibition of cell viability compared to the treatment with either agent alone. Conclusion: Overall, it can be argued that VPA does not only cause inhibition of proliferation and induction of apoptosis in ovarian cancer cells but also helps to enhance the antiproliferative effects of cisplatin and results in the increased susceptibility to cisplatin in resistant cells. VPA may therefore be used to treat cancer in the future.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46120-46126 ◽  
Author(s):  
Kamila Kloudová ◽  
Hana Hromádková ◽  
Simona Partlová ◽  
Tomáš Brtnický ◽  
Lukáš Rob ◽  
...  

2021 ◽  
Author(s):  
Suiying Liang ◽  
Yueyang Liu ◽  
Jianhui He ◽  
Tian Gao ◽  
Lanying Li ◽  
...  

Abstract Purpose: Ovarian cancer is the most lethal malignancy with depressive 5-year survival rate, mainly due to patients with advanced stages experience tumor recurrence and resistance to the current chemotherapeutic agents. Thus, discovering the underlying molecular mechanisms involved in chemo-resistance is crucial for management of treatment to improve therapeutic outcomes. Methods: The protein and mRNA expression of FAM46A in ovarian cancer cell lines and patient tissues were determined using Real-time PCR and Western blot and IHC respectively. Functional assays, such as MTT, FACS assay used to determine the oncogenic role of FAM46A in human ovarian cancer progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of FAM46A promotes chemoresistance in ovarian cancer cells. Results: In the current study, we found overexpression of FAM46A expression in ovarian cancer patients demonstrated an aggressive phenotype and poor prognosis. Furthermore, FAM46A overexpression in ovarian cancer cells demonstrated higher CDDP resistance ability; however, inhibition of FAM46A sensitized ovarian cancer cell lines to CDDP cytotoxicity both in vitro and in vivo. Mechanically, upregulation of FAM46A activated transforming growth factor-β (TGF-β)/Smad signaling and upregulated the levels of nuclear Smad2. Conclusions: Taken together, our results highlight the important oncogenic role of FAM46A in ovarian cancer progression and might provide a potential clinical target for patients with chemoresistant ovarian cancer.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 237 ◽  
Author(s):  
Okiemute Rosa Johnson-Ajinwo ◽  
Alan Richardson ◽  
Wen-Wu Li

Ovarian cancer ranks amongst the deadliest cancers in the gynaecological category of cancers. This research work aims to evaluate in vitro anti-ovarian cancer activities and identify phytochemical constituents of a rarely explored plant species—Rutidea parviflora DC. The aqueous and organic extracts of the plant were evaluated for cytotoxicity using sulforhodamine B assay in four ovarian cancer cell lines and an immortalized human ovarian epithelial (HOE) cell line. The bioactive compounds were isolated and characterized by gas/liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. Caspase 3/7 activity assay, western blotting and flow cytometry were carried out to assess apoptotic effects of active compounds. The extracts/fractions of R. parviflora showed promising anti-ovarian cancer activities in ovarian cancer cell lines. A principal cytotoxic alkaloid was identified as palmatine whose IC50 was determined as 5.5–7.9 µM. Palmatine was relatively selective towards cancer cells as it was less cytotoxic toward HOE cells, also demonstrating interestingly absence of cross-resistance in cisplatin-resistant A2780 cells. Palmatine further induced apoptosis by increasing caspase 3/7 activity, poly-ADP-ribose polymerase cleavage, and annexin V and propidium iodide staining in OVCAR-4 cancer cells. Our studies warranted further investigation of palmatine and R. parviflora extracts in preclinical models of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document