scholarly journals Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS)

2022 ◽  
Vol 10 (1) ◽  
pp. e003847
Author(s):  
Marc Wehrli ◽  
Kathleen Gallagher ◽  
Yi-Bin Chen ◽  
Mark B Leick ◽  
Steven L McAfee ◽  
...  

In addition to remarkable antitumor activity, chimeric antigen receptor (CAR) T-cell therapy is associated with acute toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Current treatment guidelines for CRS and ICANS include use of tocilizumab, a monoclonal antibody that blocks the interleukin (IL)-6 receptor, and corticosteroids. In patients with refractory CRS, use of several other agents as third-line therapy (including siltuximab, ruxolitinib, anakinra, dasatinib, and cyclophosphamide) has been reported on an anecdotal basis. At our institution, anakinra has become the standard treatment for the management of steroid-refractory ICANS with or without CRS, based on recent animal data demonstrating the role of IL-1 in the pathogenesis of ICANS/CRS. Here, we retrospectively analyzed clinical and laboratory parameters, including serum cytokines, in 14 patients at our center treated with anakinra for steroid-refractory ICANS with or without CRS after standard treatment with tisagenlecleucel (Kymriah) or axicabtagene ciloleucel (Yescarta) CD19-targeting CAR T. We observed statistically significant and rapid reductions in fever, inflammatory cytokines, and biomarkers associated with ICANS/CRS after anakinra treatment. With three daily subcutaneous doses, anakinra did not have a clear, clinically dramatic effect on neurotoxicity, and its use did not result in rapid tapering of corticosteroids; although neutropenia and thrombocytopenia were common at the time of anakinra dosing, there were no clear delays in hematopoietic recovery or infections that were directly attributable to anakinra. Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.

Author(s):  
Bianca D. Santomasso ◽  
Loretta J. Nastoupil ◽  
Sherry Adkins ◽  
Christina Lacchetti ◽  
Bryan J. Schneider ◽  
...  

PURPOSE To increase awareness, outline strategies, and offer guidance on the recommended management of immune-related adverse events (irAEs) in patients treated with chimeric antigen receptor (CAR) T-cell therapy. METHODS A multidisciplinary panel of medical oncology, neurology, hematology, emergency medicine, nursing, trialists, and advocacy experts was convened to develop the guideline. Guideline development involved a systematic literature review and an informal consensus process. The systematic review focused on evidence published from 2017 to 2021. RESULTS The systematic review identified 35 eligible publications. Because of the paucity of high-quality evidence, recommendations are based on expert consensus. RECOMMENDATIONS The multidisciplinary team issued recommendations to aid in the recognition, workup, evaluation, and management of the most common CAR T-cell–related toxicities, including cytokine release syndrome, immune effector cell–associated neurotoxicity syndrome, B-cell aplasia, cytopenias, and infections. Management of short-term toxicities associated with CAR T cells begins with supportive care for most patients, but may require pharmacologic interventions for those without adequate response. Management of patients with prolonged or severe CAR T-cell–associated cytokine release syndrome includes treatment with tocilizumab with or without a corticosteroid. On the basis of the potential for rapid decline, patients with moderate to severe immune effector cell–associated neurotoxicity syndrome should be managed with corticosteroids and supportive care. Additional information is available at www.asco.org/supportive-care-guidelines .


2021 ◽  
Vol 11 ◽  
Author(s):  
Brandon Douglas Brown ◽  
Francesco Paolo Tambaro ◽  
Mira Kohorst ◽  
Linda Chi ◽  
Kris Michael Mahadeo ◽  
...  

The Cornell Assessment for Pediatric Delirium (CAPD) was first proposed by the Pediatric Acute Lung Injury and Sepsis Investigators Network-Stem Cell Transplantation and Cancer Immunotherapy Subgroup and MD Anderson CARTOX joint working committees, for detection of immune effector cell associated neurotoxicity (ICANS) in pediatric patients receiving chimeric antigen receptor (CAR) T-cell therapy. It was subsequently adopted by the American Society for Transplantation and Cellular Therapy. The utility of CAPD as a screening tool for early diagnosis of ICANS has not been fully characterized. We conducted a retrospective study of pediatric and young adult patients (n=15) receiving standard-of-care CAR T-cell products. Cytokine release syndrome (CRS) and ICANS occurred in 87% and 40% of patients, respectively. ICANS was associated with significantly higher peaks of serum ferritin. A change in CAPD from a prior baseline was noted in 60% of patients with ICANS, 24–72 h prior to diagnosis of ICANS. The median change from baseline to maximum CAPD score of patients who developed ICANS versus those who did not was 13 versus 3, respectively (p=0.0004). Changes in CAPD score from baseline may be the earliest indicator of ICANS among pediatric and young adult patients which may warrant closer monitoring, with more frequent CAPD assessments.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7566-7566
Author(s):  
Caspian Oliai ◽  
Anna Crosetti ◽  
Sven De Vos ◽  
Herbert Eradat ◽  
Monica Diane Mead ◽  
...  

7566 Background: Progress in chimeric antigen receptor (CAR) T-cell therapy has included reduction in life-threatening toxicity. Rates of severe cytokine release syndrome (CRS) have declined from 50% in early trials to 7% in the most recent real-world experience. However, rates of severe immune effector cell-associated neurotoxicity (ICANS) associated with axicabtagene ciloleucel (Axicel) remain unchanged. IL-1 is a major driver of ICANS pathophysiology that is produced upstream of IL-6. The IL-1 receptor antagonist, Anakinra, can prevent neurotoxicity in animal models when given at fever onset. We present our early experience of the first 13 participants enrolled into a phase II trial evaluating Anakinra to prevent severe ICANS (NCT4205838). Methods: This investigator-sponsored trial included adults eligible for standard-of-care Axicel for large B-cell lymphoma after ≥2 lines of intensive chemoimmunotherapy. Participants received Anakinra 100 mg SQ q6h x 12-36 doses until ICANS returned to grade ≤1. The trigger to initiate Anakinra was any grade ICANS or grade ≥3 CRS in the absence of ICANS. A protocol modification, made after the first 3 participants were treated, changed the trigger for Anakinra to grade ≥2 CRS. In addition to Anakinra, all participants received standard-of-care interventions for CRS and ICANS. The primary objective is to estimate the efficacy of Anakinra in preventing severe ICANS (grade ≥3) according to ASTCT 2018 consensus grading. Results: To date, 13 participants have been enrolled, and 7 met criteria to initiate Anakinra and received the first dose prior to severe ICANS. Median age was 56 years (range, 23-84 years). Of the 7 participants whom received Anakinra prior to severe ICANS, only 1 of 7 (14%) developed grade 3 ICANS. The most common adverse event was injection site reaction, which peaked at grade 2. There were no unexpected toxicities. Once the protocol was amended to initiate Anakinra for grade ≥2 CRS (N = 4), no participant developed severe ICANS, and only one participant met the institutional standard to receive corticosteroids (Table). Conclusions: Anakinra is feasible to initiate in the non-prophylactic setting in patients at increased risk for severe ICANS. These early results demonstrate potential to reduce severe ICANS associated with Axicel to a rate similar to other CAR T-cell products, and to reduce corticosteroid use. Further enrollment to the pre-planned sample size of N=36 is required to demonstrate statistical efficacy. Serum IL-1 analysis is also ongoing. Clinical trial information: NCT4205838. [Table: see text]


Author(s):  
Noa G Holtzman ◽  
Hao Xie ◽  
Soren Bentzen ◽  
Vivek Kesari ◽  
Ali Bukhari ◽  
...  

Abstract Background CD19-directed chimeric antigen receptor (CAR) T-cell therapy (CAR-T) has emerged as effective for relapsed/refractory large B-cell lymphoma (R/R LBCL). The neurologic toxicity seen with CAR-T, referred to as immune effector cell–associated neurotoxicity syndrome (ICANS), is poorly understood. To better elucidate the clinical characteristics, treatment outcomes, and correlative biomarkers of ICANS, we review here a single-center analysis of ICANS after CAR T-cell therapy in R/R LBCL. Methods Patients (n = 45) with R/R LBCL treated with axicabtagene ciloleucel (axi-cel) were identified. Data regarding treatment course, clinical outcomes, and correlative studies were collected. Patients were monitored and graded for ICANS via CARTOX-10 scoring and Common Terminology Criteria for Adverse Events (CTCAE) v4.03 criteria, respectively. Results Twenty-five (56%) patients developed ICANS, 18 (72%) of whom had severe (CTCAE grades 3–4) ICANS. Median time to development of ICANS was 5 days (range, 3–11). Elevated pre-infusion (day 0 [D0]) fibrinogen (517 vs 403 mg/dL, upper limit of normal [ULN] 438 mg/dL, P = 0.01) and D0 lactate dehydrogenase (618 vs 506 units/L, ULN 618 units/L, P = 0.04) were associated with ICANS. A larger drop in fibrinogen was associated with ICANS (393 vs 200, P < 0.01). Development of ICANS of any grade had no effect on complete remission (CR), progression-free survival (PFS), or overall survival (OS). Duration and total dose of steroid treatment administered for ICANS did not influence CR, PFS, or OS. Conclusions ICANS after CAR-T with axi-cel for R/R LBCL was seen in about half of patients, the majority of which were high grade. Contrary to previous reports, neither development of ICANS nor its treatment were associated with inferior CR, PFS, or OS. The novel finding of high D0 fibrinogen level can identify patients at higher risk for ICANS.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4816-4816
Author(s):  
Urwat Til Vusqa ◽  
Palash Asawa ◽  
Maitreyee Rai ◽  
Yazan Samhouri ◽  
Prerna Mewawalla ◽  
...  

Abstract Introduction Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigm for patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and other hematologic malignancies. However, its use is associated with serious adverse effects including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Severe ICANS can present with aphasia, mutism, somnolence, seizures, signs of increased intracranial pressure and rarely cerebral edema. Corticosteroids (CS) and IL-6 inhibitors are first line treatment for CRS and ICANS. Prolonged CS use has been associated with decreased over-all survival in CAR T-cell treated patients. Data on effective treatments for CART T-cell induced neurotoxicity is limited, especially in steroid-refractory ICANS. Blood-brain barrier (BBB) disruption and infiltration of myeloid and immune effector cells into the central nervous system are implicated in the pathogenesis of ICANS. This likely explains the role of intrathecal chemotherapy, which has been described in literature for treatment of steroid-refractory ICANS. Here, we report the outcomes of two patients with refractory DLBCL who developed severe ICANS after receiving axicabtagene ciloleucel (axi cel) and treated with intrathecal (IT) chemotherapy. Case Presentation Our first case is of a 66 year old male with diagnosis of R/R DLBCL, who was treated with R-CHOP, followed by R-GemOx, with no response then received axi cel. Patient developed grade 2 CRS and grade 1 ICANS (National Cancer Institute Common Terminology Criteria for Adverse Effects v4.03) on day +2 post infusion, treated with tocilizumab and dexamethasone with good response initially. While tapering dexamethasone on day +5, he developed grade 3 CRS and grade 3 ICANS. Brain MRI did not show any intracranial abnormality and EEG showed no seizure activity. Lumbar puncture (LP) was done on day +7 and showed opening pressure of 32 cm H2O, and 12 lymphocytes. He was started on IV solumedrol and tocilizumab was resumed. CRS improved while neurotoxicity progressed to grade 4 prompting intubation and mechanical ventilation on day +8. On day +9, patient received intrathecal methotrexate 12 mg and hydrocortisone 50 mg. On day +12, neurotoxicity improved to grade 1 and patient was extubated on day +13. Steroid taper stopped on +17. Despite disease response, patient remained hospitalized at day +45 for deconditioning and vocal cord paralysis related to a lengthy hospital stay and intubation. He was eventually discharged, however passed away on day +49 from complications of prolonged hospitalization. Our second case is of a 69 year old female with a diagnosis of R/R DLBCL with CNS involvement, treated with RCHOP x6 followed by salvage chemotherapy with refractory disease, She then received axi cel. Patient developed grade 1 CRS on day +4, treated with tocilizumab and dexamethasone, and patient responded well. On day +9, she developed grade 2 CRS and grade 3 ICANS. At that time, dexamethasone was switched to pulse dose solumedrol and tocilizumab was continued. CT head showed no acute intracranial abnormality and EEG did not show any epileptiform activity. LP showed opening pressure of 21, and 84 lymphocytes. On day +11, patient's CRS resolved, however ICANS developed to grade 4 and patient received 12 mg intrathecal methotrexate and hydrocortisone 50 mg for steroid-refractory ICANS. The very next day, patient showed significant neurological improvement. Steroid taper was initiated and patient's ICANS resolved on day +16. MRI brain showed decrease in size of nodular enhancement along periventricular white matter and left occipital area corresponding to treatment response. She was discharged on day +28 and continues to do well one year out of axi cel infusion Conclusion Our abstract adds to the sparse literature about the use IT chemotherapy in cases with severe ICANS. It also highlights its importance as an alternative potential therapy to high doses and prolonged courses of corticosteroids which is associated with increased morbidity and mortality. Steroid-refractory ICANS has limited treatment options and further evaluation of the use of IT chemotherapy in large scale studies is warranted. Disclosures Kahn: Abbvie: Research Funding, Speakers Bureau; Astrazeneca: Research Funding, Speakers Bureau; Beigene: Research Funding, Speakers Bureau; Epizyme: Research Funding, Speakers Bureau; Genetech: Research Funding, Speakers Bureau; GSK: Speakers Bureau; Karyopharm: Speakers Bureau; Kite: Speakers Bureau; Morphosys: Speakers Bureau; Sanofi: Speakers Bureau; SeaGen: Speakers Bureau. Fazal: Agios: Consultancy, Honoraria, Speakers Bureau; AMGEN: Consultancy, Honoraria, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Speakers Bureau; Gilead Sciences: Consultancy, Honoraria, Speakers Bureau; Glaxo Smith Kline: Consultancy, Honoraria, Speakers Bureau; Incyte: Consultancy, Honoraria, Speakers Bureau; Janssen Oncology: Consultancy, Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Karyopharm Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau; Sanofi Genzyme: Consultancy, Honoraria, Speakers Bureau; Stemline Therapeutics: Consultancy, Honoraria, Speakers Bureau; Taiho Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria, Speakers Bureau. Lister: Oncology Analytics: Other: Academic Board.


Author(s):  
Raphael Teipel ◽  
Frank P Kroschinsky ◽  
Michael Kramer ◽  
Theresa Kretschmann ◽  
Katharina Egger-Heidrich ◽  
...  

Inflammation plays an important role in CAR-T-cell therapy, especially in the pathophysiology of cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Clonal hematopoiesis of indetermined potential (CHIP) has also been associated with chronic inflammation. The relevance of CHIP in the context of CAR-T-cell treatment is currently widely unknown. We longitudinally evaluated the prevalence of CHIP, using a targeted deep sequencing approach in a cohort of patients with r/r B-NHL before and after CAR-T-cell treatment. The aim was to define the prevalence and variation of CHIP over time and to assess the influence on clinical inflammation syndromes (CRS/ICANS), cytopenia and outcome. Overall, 32 patients were included. CHIP was found in 11 of 32 patients (34 %) before CAR-T-cell therapy. CHIP progression was commonly detected in the later course. Patients with CHIP showed a comparable response rate to CAR-T-cell treatment but had an improved OS (not reached vs. 265 days, p=0.003). No significant difference was observed in terms of the occurrence and severity of CRS/ICANS, therapeutic usage of tocilizumab and glucocorticosteroids, paraclinical markers of inflammation (except ferritin) or dynamics of hematopoietic recovery. CHIP is commonly observed in patients undergoing CD19-directed CAR-T-cell therapy and is not associated with an inferior outcome.


2020 ◽  
Vol 11 ◽  
Author(s):  
Juliane Gust ◽  
Rafael Ponce ◽  
W. Conrad Liles ◽  
Gwenn A. Garden ◽  
Cameron J. Turtle

Chimeric antigen receptor (CAR) T cells provide new therapeutic options for patients with relapsed/refractory hematologic malignancies. However, neurotoxicity is a frequent, and potentially fatal, complication. The spectrum of manifestations ranges from delirium and language dysfunction to seizures, coma, and fatal cerebral edema. This novel syndrome has been designated immune effector cell–associated neurotoxicity syndrome (ICANS). In this review, we draw an arc from our current understanding of how systemic and potentially local cytokine release act on the CNS, toward possible preventive and therapeutic approaches. We systematically review reported correlations of secreted inflammatory mediators in the serum/plasma and cerebrospinal fluid with the risk of ICANS in patients receiving CAR T cell therapy. Possible pathophysiologic impacts on the CNS are covered in detail for the most promising candidate cytokines, including IL-1, IL-6, IL-15, and GM-CSF. To provide insight into possible final common pathways of CNS inflammation, we place ICANS into the context of other systemic inflammatory conditions that are associated with neurologic dysfunction, including sepsis-associated encephalopathy, cerebral malaria, thrombotic microangiopathy, CNS infections, and hepatic encephalopathy. We then review in detail what is known about systemic cytokine interaction with components of the neurovascular unit, including endothelial cells, pericytes, and astrocytes, and how microglia and neurons respond to systemic inflammatory challenges. Current therapeutic approaches, including corticosteroids and blockade of IL-1 and IL-6 signaling, are reviewed in the context of what is known about the role of cytokines in ICANS. Throughout, we point out gaps in knowledge and possible new approaches for the investigation of the mechanism, prevention, and treatment of ICANS.


2021 ◽  
pp. 668-678
Author(s):  
Rahul Banerjee ◽  
Nina Shah ◽  
Adam P. Dicker

Chimeric antigen receptor T-cell (CAR-T) therapy is a paradigm-shifting immunotherapy modality in oncology; however, unique toxicities such as cytokine release syndrome (CRS) and immune effector cell–associated neurotoxicity syndrome limit its ability to be implemented more widely in the outpatient setting or at smaller-volume centers. Three operational challenges with CAR-T therapy include the following: (1) the logistics of toxicity monitoring, ie, with frequent vital sign checks and neurologic assessments; (2) the specialized knowledge required for toxicity management, particularly with regard to CRS and immune effector cell–associated neurotoxicity syndrome; and (3) the need for high-quality symptomatic and supportive care during this intensive period. In this review, we explore potential niches for digital innovations that can improve the implementation of CAR-T therapy in each of these domains. These tools include patient-facing technologies and provider-facing platforms: for example, wearable devices and mobile health apps to screen for fevers and encephalopathy, electronic patient-reported outcome assessments–based workflows to assist with symptom management, machine learning algorithms to predict emerging CRS in real time, clinical decision support systems to assist with toxicity management, and digital coaching to help maintain wellness. Televisits, which have grown in prominence since the novel coronavirus pandemic, will continue to play a key role in the monitoring and management of CAR-T–related toxicities as well. Limitations of these strategies include the need to ensure care equity and stakeholder buy-in, both operationally and financially. Nevertheless, once developed and validated, the next-generation implementation of CAR-T therapy using these digital tools may improve both its safety and accessibility.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lele Miao ◽  
Zhengchao Zhang ◽  
Zhijian Ren ◽  
Yumin Li

The application of chimeric antigen receptor (CAR) T-cell therapy as a tumor immunotherapy has received great interest in recent years. This therapeutic approach has been used to treat hematological malignancies solid tumors. However, it is associated with adverse reactions such as, cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), off-target effects, anaphylaxis, infections associated with CAR-T-cell infusion (CTI), tumor lysis syndrome (TLS), B-cell dysplasia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) and coagulation disorders. These adverse reactions can be life-threatening, and thus they should be identified early and treated effectively. In this paper, we review the adverse reactions associated with CAR-T cells, the mechanisms driving such adverse reactions, and strategies to subvert them. This review will provide important reference data to guide clinical application of CAR-T cell therapy.


Sign in / Sign up

Export Citation Format

Share Document