14 Pathological oscillatory activity in Parkinson’s disease; what does it mean and how should we treat it?

2020 ◽  
Vol 91 (8) ◽  
pp. e6.1-e6
Author(s):  
Peter Brown

Professor Peter Brown is Professor of Experimental Neurology and Director of the Medical Research Council Brain Network Dynamics Unit at the University of Oxford. Prior to 2010 he was a Professor of Neurology at University College London.For decades we have had cardiac pacemakers that adjust their pacing according to demand and yet therapeutic adaptive stimulation approaches for the central nervous system are still not clinically available. Instead, to treat patients with advanced Parkinson’s disease we stimulate the basal ganglia with fixed regimes, unvarying in frequency or intensity. Although effective, this comes with side-effects and in terms of sophistication this treatment approach could be compared to having central heating system on all the time, regardless of temperature. This talk will describe recent steps being taken to define the underlying circuit dysfunction in Parkinson’s and to improve deep brain stimulation by controlling its delivery according to the state of pathological activity.Evidence is growing that motor symptoms in Parkinson’s disease are due, at least in part, to excessive synchronisation between oscillating neurons. Recordings confirm bursts of oscillatory synchronisation in the basal ganglia centred around 20 Hz. The bursts of 20 Hz activity are prolonged in patients withdrawn from their usual medication and the dominance of these long duration bursts negatively correlates with motor impairment. Longer bursts attain higher amplitudes, indicative of more pervasive oscillatory synchronisation within the neural circuit. In contrast, in heathy primates and in treated Parkinson’s disease bursts tend to be short. Accordingly, it might be best to use closed-loop controlled deep brain stimulation to selectively terminate longer, bigger, pathological beta bursts to both save power and to spare the ability of underlying neural circuits to engage in more physiological processing between long bursts. It is now possible to record and characterise bursts on-line during stimulation of the same site and trial adaptive stimulation. Thus far, this has demonstrated improvements in efficiency and side-effects over conventional continuous stimulation, with at least as good symptom control in Parkinsonian patients.

BMJ Open ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. e029652 ◽  
Author(s):  
Dan Piña-Fuentes ◽  
Martijn Beudel ◽  
Simon Little ◽  
Peter Brown ◽  
D L Marinus Oterdoom ◽  
...  

IntroductionAdaptive deep brain stimulation (aDBS), based on the detection of increased beta oscillations in the subthalamic nucleus (STN), has been assessed in patients with Parkinson’s disease (PD) during the immediate postoperative setting. In these studies, aDBS was shown to be at least as effective as conventional DBS (cDBS), while stimulation time and side effects were reduced. However, the effect of aDBS on motor symptoms and stimulation-induced side effects during the chronically implanted phase (after the stun effect of DBS placement has disappeared) has not yet been determined.Methods and analysisThis protocol describes a single-centre clinical study in which aDBS will be tested in 12 patients with PD undergoing battery replacement, with electrodes implanted in the STN, and as a proof of concept in the internal globus pallidus. Patients included will be allocated in a pseudo-randomised fashion to a three-condition (no stimulation/cDBS/ aDBS), cross-over design. A battery of tests will be conducted and recorded during each condition, which aim to measure the severity of motor symptoms and side effects. These tests include a tablet-based tapping test, a subscale of the Movement Disorder Society-unified Parkinson’s disease rating scale (subMDS-UPDRS), the Speech Intelligibility Test (SIT) and a tablet-based version of the Stroop test. SubMDS-UPDRS and SIT recordings will be blindly assessed by independent raters. Data will be analysed using a linear mixed-effects model.Ethics and disseminationThis protocol was approved by the Ethical Committee of the University Medical Centre Groningen, where the study will be carried out. Data management and compliance to research policies and standards of our centre, including data privacy, storage and veracity, will be controlled by an independent monitor. All the scientific findings derived from this protocol are aimed to be made public through publication of articles in international journals.Trial registration numberNTR 5456; Pre-results.


Brain ◽  
2008 ◽  
Vol 131 (12) ◽  
pp. 3410-3420 ◽  
Author(s):  
P. Crenna ◽  
I. Carpinella ◽  
L. Lopiano ◽  
A. Marzegan ◽  
M. Rabuffetti ◽  
...  

2019 ◽  
Vol 116 (52) ◽  
pp. 26259-26265 ◽  
Author(s):  
Jerrold L. Vitek ◽  
Luke A. Johnson

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder affecting over 10 million people worldwide. In the 1930s and 1940s there was little understanding regarding what caused PD or how to treat it. In a desperate attempt to improve patients’ lives different regions of the neuraxis were ablated. Morbidity and mortality were common, but some patients’ motor signs improved with lesions involving the basal ganglia or thalamus. With the discovery ofl-dopa the advent of medical therapy began and surgical approaches became less frequent. It soon became apparent, however, that medical therapy was associated with side effects in the form of drug-induced dyskinesia and motor fluctuations and surgical therapies reemerged. Fortunately, during this time studies in monkeys had begun to lay the groundwork to understand the functional organization of the basal ganglia, and with the discovery of the neurotoxin MPTP a monkey model of PD had been developed. Using this model scientists were characterizing the physiological changes that occurred in the basal ganglia in PD and models of basal ganglia function and dysfunction were proposed. This work provided the rationale for the return of pallidotomy, and subsequently deep brain stimulation procedures. In this paper we describe the evolution of these monkey studies, how they provided a greater understanding of the pathophysiology underlying the development of PD and provided the rationale for surgical procedures, the search to understand mechanisms of DBS, and how these studies have been instrumental in understanding PD and advancing the development of surgical therapies for its treatment.


2014 ◽  
Vol 2 (5) ◽  
pp. 149-155 ◽  
Author(s):  
Peter Zsigmond ◽  
Maria Nord ◽  
Anita Kullman ◽  
Elin Diczfalusy ◽  
Karin Wårdell ◽  
...  

2017 ◽  
Vol 89 (7) ◽  
pp. 687-691 ◽  
Author(s):  
Allen L Ho ◽  
Rohaid Ali ◽  
Ian D Connolly ◽  
Jaimie M Henderson ◽  
Rohit Dhall ◽  
...  

ObjectiveNo definitive comparative studies of the efficacy of ‘awake’ deep brain stimulation (DBS) for Parkinson’s disease (PD) under local or general anaesthesia exist, and there remains significant debate within the field regarding differences in outcomes between these two techniques.MethodsWe conducted a literature review and meta-analysis of all published DBS for PD studies (n=2563) on PubMed from January 2004 to November 2015. Inclusion criteria included patient number >15, report of precision and/or clinical outcomes data, and at least 6 months of follow-up. There were 145 studies, 16 of which were under general anaesthesia. Data were pooled using an inverse-variance weighted, random effects meta-analytic model for observational data.ResultsThere was no significant difference in mean target error between local and general anaesthesia, but there was a significantly less mean number of DBS lead passes with general anaesthesia (p=0.006). There were also significant decreases in DBS complications, with fewer intracerebral haemorrhages and infections with general anaesthesia (p<0.001). There were no significant differences in Unified Parkinson’s Disease Rating Scale (UPDRS) Section II scores off medication, UPDRS III scores off and on medication or levodopa equivalent doses between the two techniques. Awake DBS cohorts had a significantly greater decrease in treatment-related side effects as measured by the UPDRS IV off medication score (78.4% awake vs 59.7% asleep, p=0.022).ConclusionsOur meta-analysis demonstrates that while DBS under general anaesthesia may lead to lower complication rates overall, awake DBS may lead to less treatment-induced side effects. Nevertheless, there were no significant differences in clinical motor outcomes between the two techniques. Thus, DBS under general anaesthesia can be considered at experienced centres in patients who are not candidates for traditional awake DBS or prefer the asleep alternative.


Sign in / Sign up

Export Citation Format

Share Document