scholarly journals Raised intracranial pressure and cerebral blood flow: 3. Venous outflow tract pressures and vascular resistances in experimental intracranial hypertension

1974 ◽  
Vol 37 (4) ◽  
pp. 392-402 ◽  
Author(s):  
I. H. Johnston ◽  
J. O. Rowan
1985 ◽  
Vol 13 (4) ◽  
pp. 295
Author(s):  
Cecil Borel ◽  
Joanne E. Backofen ◽  
Raymond C. Koehler ◽  
M. Douglas Jones ◽  
Richard J. Traystman

2019 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Magdalena Nowaczewska ◽  
Henryk Kaźmierczak

Headaches attributed to low cerebrospinal fluid (CSF) pressure are described as orthostatic headaches caused by spontaneous or secondary low CSF pressure or CSF leakages. Regardless of the cause, CFS leaks may lead to intracranial hypotension (IH) and influence cerebral blood flow (CBF). When CSF volume decreases, a compensative increase in intracranial blood volume and cerebral vasodilatation occurs. Sinking of the brain and traction on pain-sensitive structures are thought to be the causes of orthostatic headaches. Although there are many studies concerning CBF during intracranial hypertension, little is known about CBF characteristics during low intracranial pressure. The aim of this review is to examine the relationship between CBF, CSF, and intracranial pressure in headaches assigned to low CSF pressure.


1983 ◽  
Vol 3 (2) ◽  
pp. 246-249 ◽  
Author(s):  
A. Forster ◽  
O. Juge ◽  
D. Morel

Although it is known that hypercarbia increases and benzodiazepines decrease cerebral blood flow (CBF), the effects of benzodiazepines on CBF responsiveness to CO2 are not well documented. The influence on CBF and CBF-C02 sensitivity of placebo or midazolam, which is a new water-soluble benzodiazepine, was measured in eight healthy volunteers using the noninvasive 133Xe inhalation method for CBF determination. Under normocarbia, midazolam decreased CBF from 40.6 ± 3.2 to 27.0 ± 5.0 ml 100 g−1 min−1 (x̄ ± SD). At a later session under hypercarbia, CBF was 58.8 ± 4.4 ml 100 g−1 min−1 after administration of placebo, and 49.1 ± 10.2 ml 100 g−1 min−1 after midazolam. The mean of the slopes correlating Paco2 and CBF was significantly steeper with midazolam (2.5 ± 1.2 ml 100 g−1 min−1 mm Hg−1) than with placebo (1.5 ± 0.4 ml 100 g−1 min−1 mm Hg−1). Our results suggest that midazolam may be a safe agent to use in patients with intracranial hypertension, since it decreases CBF and thus cerebral blood volume; however, it should be administered with caution in nonventilated patients with increased intracranial pressure, since its beneficial effects on cerebrovascular tone can be readily counteracted by the increase in arterial CO2 tension induced by this drug.


Sign in / Sign up

Export Citation Format

Share Document