scholarly journals Ambient concentrations of NO2 and hospital admissions for schizophrenia

2018 ◽  
Vol 76 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Lijun Bai ◽  
Xulai Zhang ◽  
Yanwu Zhang ◽  
Qiang Cheng ◽  
Jun Duan ◽  
...  

ObjectivesSchizophrenia is a chronic and severe mental disorder affecting more than 21 million people worldwide. Short-term exposure to nitrogen dioxide (NO2) has been associated with hospital admissions (HAs) for mental disorders, but no study has evaluated the specific association of NO2 and schizophrenia. Additionally, the shape of the concentration–response (C–R) curve has not yet been assessed at present. This study aims to investigate the relationship between short-term exposure to NO2 and HAs for schizophrenia in Hefei, from 2014 to 2016. We also attempt to explore the C–R and the underlying effect modifiers of the association.MethodsDaily number of HAs for schizophrenia was derived from the computerised medical record system of Anhui Mental Health Center. We used a time-series Poisson generalised linear regression combined with distributed lag non-linear models to model the NO2–schizophrenia relationship.ResultsA total of 11 373 HAs were identified during the study period. An increase in levels of NO2 was significantly associated with elevated schizophrenia HAs. The estimated relative risk per IQR increase in NO2 at lag 01 was 1.10 (95% CI 1.01 to 1.18). Greater association was observed in young patients (relative risk: 1.11, 95% CI 1.02 to 1.19). The modelled C–R curves of the NO2–schizophrenia relationship suggested possible threshold effects of NO2 for all ages combined, young patients, men and both seasons.ConclusionsShort-term exposure to NO2 may be associated with increased schizophrenia HAs. Findings indicated potential threshold effects of NO2, which has important implications for health-based risk assessments.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mark Ashworth ◽  
◽  
Antonis Analitis ◽  
David Whitney ◽  
Evangelia Samoli ◽  
...  

Abstract Background Although the associations of outdoor air pollution exposure with mortality and hospital admissions are well established, few previous studies have reported on primary care clinical and prescribing data. We assessed the associations of short and long-term pollutant exposures with General Practitioner respiratory consultations and inhaler prescriptions. Methods Daily primary care data, for 2009–2013, were obtained from Lambeth DataNet (LDN), an anonymised dataset containing coded data from all patients (1.2 million) registered at general practices in Lambeth, an inner-city south London borough. Counts of respiratory consultations and inhaler prescriptions by day and Lower Super Output Area (LSOA) of residence were constructed. We developed models for predicting daily PM2.5, PM10, NO2 and O3 per LSOA. We used spatio-temporal mixed effects zero inflated negative binomial models to investigate the simultaneous short- and long-term effects of exposure to pollutants on the number of events. Results The mean concentrations of NO2, PM10, PM2.5 and O3 over the study period were 50.7, 21.2, 15.6, and 49.9 μg/m3 respectively, with all pollutants except NO2 having much larger temporal rather than spatial variability. Following short-term exposure increases to PM10, NO2 and PM2.5 the number of consultations and inhaler prescriptions were found to increase, especially for PM10 exposure in children which was associated with increases in daily respiratory consultations of 3.4% and inhaler prescriptions of 0.8%, per PM10 interquartile range (IQR) increase. Associations further increased after adjustment for weekly average exposures, rising to 6.1 and 1.2%, respectively, for weekly average PM10 exposure. In contrast, a short-term increase in O3 exposure was associated with decreased number of respiratory consultations. No association was found between long-term exposures to PM10, PM2.5 and NO2 and number of respiratory consultations. Long-term exposure to NO2 was associated with an increase (8%) in preventer inhaler prescriptions only. Conclusions We found increases in the daily number of GP respiratory consultations and inhaler prescriptions following short-term increases in exposure to NO2, PM10 and PM2.5. These associations are more pronounced in children and persist for at least a week. The association with long term exposure to NO2 and preventer inhaler prescriptions indicates likely increased chronic respiratory morbidity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhan Ren ◽  
Xingyuan Liu ◽  
Tianyu Liu ◽  
Dieyi Chen ◽  
Kuizhuang Jiao ◽  
...  

Abstract Background Positive associations between ambient PM2.5 and cardiorespiratory disease have been well demonstrated during the past decade. However, few studies have examined the adverse effects of PM2.5 based on an entire population of a megalopolis. In addition, most studies in China have used averaged data, which results in variations between monitoring and personal exposure values, creating an inherent and unavoidable type of measurement error. Methods This study was conducted in Wuhan, a megacity in central China with about 10.9 million people. Daily hospital admission records, from October 2016 to December 2018, were obtained from the Wuhan Information center of Health and Family Planning, which administrates all hospitals in Wuhan. Daily air pollution concentrations and weather variables in Wuhan during the study period were collected. We developed a land use regression model (LUR) to assess individual PM2.5 exposure. Time-stratified case-crossover design and conditional logistic regression models were adopted to estimate cardiorespiratory hospitalization risks associated with short-term exposure to PM2.5. We also conducted stratification analyses by age, sex, and season. Results A total of 2,806,115 hospital admissions records were collected during the study period, from which we identified 332,090 cardiovascular disease admissions and 159,365 respiratory disease admissions. Short-term exposure to PM2.5 was associated with an increased risk of a cardiorespiratory hospital admission. A 10 μg/m3 increase in PM2.5 (lag0–2 days) was associated with an increase in hospital admissions of 1.23% (95% CI 1.01–1.45%) and 1.95% (95% CI 1.63–2.27%) for cardiovascular and respiratory diseases, respectively. The elderly were at higher PM-induced risk. The associations appeared to be more evident in the cold season than in the warm season. Conclusions This study contributes evidence of short-term effects of PM2.5 on cardiorespiratory hospital admissions, which may be helpful for air pollution control and disease prevention in Wuhan.


Author(s):  
Yuxiong Chen ◽  
Dehui Kong ◽  
Jia Fu ◽  
Yongqiao Zhang ◽  
Yakun Zhao ◽  
...  

Author(s):  
Zahra Namvar ◽  
Mostafa Hadei ◽  
Seyed Saeed Hashemi ◽  
Elahe Shahhosseini ◽  
Philip K. Hopke ◽  
...  

Introduction: Air pollution is one of the main causes for the significant increase of respiratory infections in Tehran. In the present study, we investigated the associations between short-term exposure to ambient air pollutants with the hospital admissions and deaths. Materials and methods: Health data from 39915 hospital admissions and 2459 registered deaths associated with these hospital admissions for respiratory infections were obtained from the Ministry of Health and Medical Education during 2014-2017. We used the distributed lag non-linear model (DLNM) for the analyses. Results: There was a statistically positive association between PM2.5 and AURI in the age group of 16 years and younger at lags 6 (RR 1.31; 1.05-1.64) and 7 (RR 1.50; 1.09-2.06). AURI admissions was associated with O3 in the age group of 16 and 65 years at lag 7 with RR 1.13 (1.00-1.27). ALRI admissions was associated with CO in the age group of 65 years and older at lag 0 with RR 1.12 (1.02-1.23). PM10 was associated with ALRI daily hospital admissions at lag 0 for males. ALRI admissions were associated with NO2 for females at lag 0. There was a positive association between ALRI deaths and SO2 in the age group of 65 years and older at lags 4 and 5 with RR 1.04 (1.00-1.09) and 1.03 (1.00-1.07), respectively. Conclusion: Exposure to outdoor air pollutants including PM10, PM2.5, SO2, NO2, O3, and CO was associated with hospital admissions for AURI and ALRI at different lags. Moreover, exposure to SO2 was associated with deaths for ALRI.


2019 ◽  
Vol 123 ◽  
pp. 150-160 ◽  
Author(s):  
Maryam Dastoorpoor ◽  
Kambiz Masoumi ◽  
Mostafa Vahedian ◽  
Hamidreza Aghababaeian ◽  
Zohreh Sekhavatpour ◽  
...  

2016 ◽  
Vol 73 (5) ◽  
pp. 300-307 ◽  
Author(s):  
Evangelia Samoli ◽  
Richard W Atkinson ◽  
Antonis Analitis ◽  
Gary W Fuller ◽  
David C Green ◽  
...  

2010 ◽  
Vol 31 (16) ◽  
pp. 2034-2040 ◽  
Author(s):  
Zorana Jovanovic Andersen ◽  
Tom Skyhøj Olsen ◽  
Klaus Kaae Andersen ◽  
Steffen Loft ◽  
Matthias Ketzel ◽  
...  

2019 ◽  
Vol 42 (2) ◽  
pp. 333-339 ◽  
Author(s):  
Kaitlyn E Watson ◽  
Kyle M Gardiner ◽  
Judith A Singleton

Abstract Background Extreme heat (EH) events are increasing in frequency and duration and cause more deaths in Australia than any other extreme weather event. Consequently, EH events lead to an increase in the number of patient presentations to hospitals. Methods Climatic observations for Hobart’s region and Royal Hobart Hospital (RHH) emergency department admissions data were collected retrospectively for the study period of 2003–2010. A distributed lag non-linear model (DLNM) was fitted using a generalized linear model with quasi-Poisson family to obtain adjusted estimates for the relationship between temperature and the relative risk of being admitted to the RHH. Results The model demonstrated that relative to the annual mean temperature of 14°C, the relative risk of being admitted to the RHH for the years 2003–2010 was significantly higher for all temperatures above 27°C (P < 0.05 in all cases). The peak effect upon admission was noted on the same day as the EH event, however, the model suggests that a lag effect exists, increasing the likelihood of admission to the RHH for a further 14 days. Conclusions To relieve the added burden on emergency departments during these events, adaptation strategies adopted by public health organizations could include preventative health initiatives.


Sign in / Sign up

Export Citation Format

Share Document