scholarly journals Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms

2021 ◽  
pp. oemed-2021-107443
Author(s):  
Myrna M T de Rooij ◽  
Renate W Hakze-Van der Honing ◽  
Marcel M Hulst ◽  
Frank Harders ◽  
Marc Engelsma ◽  
...  

ObjectiveUnprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure.MethodsAir sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks’ housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR.ResultsInside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000–10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks’ housing units and surfaces contained SARS-CoV-2 RNA.ConclusionsInfected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.

2021 ◽  
Author(s):  
Myrna M.T. de Rooij ◽  
Renate W. Hakze-Van der Honing ◽  
Marcel M. Hulst ◽  
Frank Harders ◽  
Marc Engelsma ◽  
...  

AbstractUnprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding human health which initiated intensive environmental investigations. Air sampling was performed in infected mink farms, at farm premises and at residential sites. A range of other environmental samples were collected from minks’ housing units including bedding material. Inside the farms, high levels of SARS-CoV-2 RNA were found in airborne dust, on surfaces, and on various other environmental matrices. This warns for occupational exposure which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible environmental exposure risk for nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequences analyses showing mink-to-human transmission in farm workers, but no indications for direct zoonotic transmission events to nearby communities.


2021 ◽  
Vol 195 ◽  
pp. 110863
Author(s):  
Beatriz Linillos-Pradillo ◽  
Lisa Rancan ◽  
Elías Díaz Ramiro ◽  
Elena Vara ◽  
Begoña Artíñano ◽  
...  

2016 ◽  
Vol 82 (13) ◽  
pp. 3822-3833 ◽  
Author(s):  
Despoina S. Lymperopoulou ◽  
Rachel I. Adams ◽  
Steven E. Lindow

ABSTRACTGiven that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate.IMPORTANCEThis paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute to atmospheric microbial assemblages, but much of what we know is limited to qualitative assessments. Elucidating the sources of microbes in outdoor air can inform basic biological processes seen in airborne communities (e.g., dispersal and biogeographical patterns). Furthermore, given the considerable contribution of outdoor air to microbial communities found within indoor environments, the understanding of plants as sources of airborne microbes in outdoor air might contribute to our understanding of indoor air quality. With an experimental design developed to minimize the likelihood of other-than-local plant sources contributing to the composition of airborne microbes, we provide direct evidence that plants are quantitatively important local sources of airborne microorganisms, with implications for the surrounding ecosystems.


Sign in / Sign up

Export Citation Format

Share Document