bedding materials
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 54)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Felicitas Koch ◽  
Janine Kowalczyk ◽  
Hans Mielke ◽  
Hans Schenkel ◽  
Martin Bachmann ◽  
...  

Abstract Background Domestic pigs have an evolutionary conserved exploratory behaviour. To comply with this requirement, the European Union aims at setting standards for appropriate enrichment materials for pigs (Council Directive 2008/120/EC). As recommended characteristics include ‘chewable’ and ‘edible’, pigs might also consume these materials (Commission Recommendation (EU) 2016/336), which are often additionally advertised to enhance lying comfort and hygienic conditions in stables. To date, a wide range of bedding, enrichment and disinfectant materials is available on the market to ensure environmental enrichment, a dry, hygienic environment or lying comfort. Previous studies revealed considerable amounts of undesirable substances in some of these materials possibly being a risk for food safety considering oral uptake by the animal. To determine interest and indicators for consumption of different types of materials by pigs during exploratory behaviour, a camera-assisted observational study with 12 female pigs (German Landrace) was conducted. We tested their preference for a disinfectant powder, peat, biochar and straw as reference material in a 4 × 6 factorial arrangement. Results Pigs manipulated and consumed all offered materials. However, longest manipulation time per pig was observed for biochar (63 min/day) and peat (50 min/day) (p < 0.05). Analyses of the bulk molecular-chemical composition and n-alkanes and acid insoluble ash as markers in the materials and in faeces clearly revealed the consumption of these materials by pigs. Conclusions Whether the consumption of considerable amounts together with certain levels of undesirable substances represents a risk for pig and consumer health could yet not be established. Future studies will address the quantitative contribution of undesirable substances by oral ingestion of bedding and enrichment materials and disinfectant powders to the daily feed ration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jenni Mönki ◽  
Markku Saastamoinen ◽  
Ninja Karikoski ◽  
Marianna Norring ◽  
Minna Rajamäki ◽  
...  

The effects of bedding material on air quality are important amongst horses worldwide. Respiratory diseases, especially equine asthma, are highly prevalent with air hygiene playing a major role on the pathophysiology of these diseases. The objective of our study was to investigate the effects of four bedding materials on the respiratory signs, tracheal mucus score, and tracheal wash (TW) and bronchoalveolar lavage fluid (BALF) cytology in healthy adult horses. The study design was a prospective controlled cross-over study, and the subjects were healthy adult riding school horses (n = 32) from a single stable. Wood pellet, straw pellet, and loosely stored peat (Peat 3) were compared to peat packed in plastic-covered bales (Peat 2). Lower airway endoscopy and sampling (TW and BALF) for cytological examination were performed after each 35-day bedding period. The tracheal mucus scores (P = 0.014) and respiratory rate (P = 0.026) were higher during the straw pellet period compared to the Peat 2 period. The respiratory rate was lower during the wood pellet period compared to the Peat 2 period (P = 0.004). The TW neutrophil percentage during the straw pellet period was higher compared to the Peat 2 period (P = 0.0003). The BALF neutrophil percentage was higher during the straw pellet period (P = 0.005) and during the Peat 3 period compared to the Peat 2 period (P = 0.04). We conclude that baled peat (Peat 2) caused lower neutrophil percentages in the airway samples compared to straw pellet and loosely stored peat (Peat 3). No difference was observed between Peat 2 and wood pellet. The information gained from this study may assist veterinarians and horse owners in selecting appropriate bedding materials, especially for horses with equine asthma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Deepak Marathe ◽  
Karthik Raghunathan ◽  
Anshika Singh ◽  
Prashant Thawale ◽  
Kanchan Kumari

The present study focuses on determining the phyto-treatment efficiency for treatment of moderately saline wastewater using organic raw materials, such as rice husk, coconut husk, rice straw, and charcoal. The moderately saline wastewater with total dissolved solids (TDS) concentration up to 6143.33 ± 5.77 mg/L was applied to the lysimeters at the rate of 200 m3 ha–1 day–1 in five different lysimeter treatments planted with Eucalyptus camaldulensis (T1, T2, T3, T4, and T5). T1 was a control without any filter bedding material, whereas rice straw, rice husk, coconut husk, and charcoal were used as filter bedding materials in the T2, T3, T4, and T5 treatment systems, respectively. Each treatment showed significant treatment efficiency wherein T3 had the highest removal efficiency of 76.21% followed by T4 (67.57%), T5 (65.18%), T2 (46.46%), and T1 (45.5%). T3 and T4 also showed higher salt accumulation, such as sodium (Na) and potassium (K). Further, the pollution load in terms of TDS and chemical and biological oxygen demand significantly reduced from leachate in the T3 and T4 treatments in comparison with other treatments. Parameters of the soil, such as electrical conductivity, exchangeable sodium percentage, and cation exchange capacity did not show values corresponding to high salinity or sodic soils, and therefore, no adverse impact on soil was observed in the present study. Also, Eucalyptus camaldulensis plant species showed good response to wastewater treatment in terms of growth parameters, such as root/shoot weight and nitrogen, phosphorus, and potassium (NPK) uptake, plant height, biomass, and chlorophyll content. Root and shoot dry weight were in the order T3 (51.2 and 44.6 g)&gt;T4 (49.3 and 43.5 g) &gt; T5 (47.6 and 40.5 g) &gt; T2 (46.9 and 38.2 g) &gt; T1 (45.6 and 37.1 g). Likewise, the total chlorophyll content was highest in T3 (12.6 μg/g) followed by T4 (12.3 μg/g), T5 (11.9 μg/g), T2 (11.5 μg/g), and the control, that is, T1 (11.0 μg/g). However, the most promising results were obtained for T3 and T4 treatments in comparison with the control (T1), which implies that, among all organic raw materials, coconut and rice husks showed the highest potential for salt accumulation and thereby wastewater treatment. Conclusively, the findings of the study suggest that organic raw material–based amendments are useful in managing the high salts levels in both plants and leachates.


2021 ◽  
Vol 73 (6) ◽  
pp. 1361-1370
Author(s):  
L.C. Sampaio ◽  
M.S.M. Peixoto ◽  
J.A.D. Barbosa Filho ◽  
F.A. Damasceno ◽  
N.A.F. Machado ◽  
...  

ABSTRACT The replacement of bedding in compost dairy barns (CB) comprises a recurrent management practice, but bedding materials are often not readily available in all regions and the choice of alternative materials is necessary. The objective was to evaluate the thermal attributes of carnauba straw (CS) bedding in compost dairy barn facilities. Environmental monitoring operations were performed at a commercial farm located in Northeast Brazil. Mini weather stations were used to evaluate environmental variables. The THI was evaluated as one of the comfort parameters. Analysis of the spatial distribution of bed surface temperature (BST) in the CB was performed using geostatistical techniques. The cows remained out of the comfort zone according to THI results. The BST indicated satisfactory performance and from the thermal point of view can be used as alternative bedding material in CB facilities. However, it was observed that the CS showed fast biomass degradation compared to conventional materials, widely known. In addition, inadequate temperature values (< 45°C) were found in the deeper of the CS bed, signaling higher risks of pathogenic microbial activity. Additional studies are needed for searching the proper management plans that increase the life span of the bed formed by carnauba straw.


2021 ◽  
Vol 13 (23) ◽  
pp. 13035
Author(s):  
Haiyan Duan ◽  
Minghua Ji ◽  
Yukang Xie ◽  
Jiping Shi ◽  
Li Liu ◽  
...  

The present study investigated the effects of bedding material (BM) waste on physicochemical properties, organic matter (OM) degradation, microbial community structure and metabolic function during composting. The results showed that bedding material (CK-0, S1-40%, S2-25%) optimized the composting conditions for lignocellulose and OM biodegradation. The highest OM degradation and humic substance (HS) synthesis rates were observed in the 40% BM addition group. Firmicutes was more abundant in the bedding material addition groups, whereas Proteobacteria was more abundant in the group without bedding material. Functional prediction showed higher carbohydrate and amino acid metabolism in the BM groups than that in control group. Animal and plant pathogens were almost eliminated, and saprotrophs were the dominant fungal trophic modes after 40% BM addition composting. Cellulose, hemicellulose, and organic matter had strong associations with microbial communities, such as Lysinibacillus and Corynebacterium (bacteria), compared to the associations of Aspergillus, Candida, and Sordariomycetes (fungi) (p value < 0.05). Network analysis revealed closer microbial community interactions in 40% BM addition group than in other groups. These findings provide detailed information about the coupling of material conversion, of bacterial and fungal succession during composting, and that bedding materials waste can also be used as an effective compost amendment.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7189
Author(s):  
Christoph Verschaffel-Drefke ◽  
Markus Schedel ◽  
Constantin Balzer ◽  
Volker Hinrichsen ◽  
Ingo Sass

To prevent accelerated thermal aging or insulation faults in cable systems due to overheating, the current carrying capacity is usually limited by specific conductor temperatures. As the heat produced during the operation of underground cables has to be dissipated to the environment, the actual current carrying capacity of a power cable system is primarily dependent on the thermal properties of the surrounding porous bedding material and soil. To investigate the heat dissipation processes around buried power cables of real scale and with realistic electric loading, a field experiment consisting of a main field with various cable configurations, laid in four different bedding materials, and a side field with additional cable trenches for thermally enhanced bedding materials and protection pipe systems was planned and constructed. The experimental results present the strong influences of the different bedding materials on the maximum cable ampacity. Alongside the importance of the basic thermal properties, the influence of the bedding’s hydraulic properties, especially on the drying and rewetting effects, were observed. Furthermore, an increase in ampacity between 25% and 35% was determined for a cable system in a duct filled with an artificial grouting material compared to a common air-filled ducted system.


2021 ◽  
Vol 11 (18) ◽  
pp. 8503
Author(s):  
Flávio A. Damasceno ◽  
Joseph L. Taraba ◽  
George B. Day ◽  
Randi A. Black ◽  
Jeffrey M. Bewley ◽  
...  

Among animal facilities, compost-bedded pack (CBP) barns have attracted a lot of attention from milk producers and the scientific community. Systematic investigation of the main thermal properties utilizing sawdust in CBP barns is of environmental and economic relevance. In this paper, the aim was to (a) develop predictive equations for the thermal conductivity (k) of compost bedding as a function of moisture content (MC), the degree of compaction (DCo), and particle size (PS); and (b) investigate the links between k and depth within bedding material. Samples of compost bedding materials were collected from 42 commercial CBP barns distributed throughout Kentucky (USA). From these predictive equations, it was possible to understand how the MC, DCo, and PS of the bedding materials may influence the behavior of k. These results are very useful for solving obstacles to simulate and predict the variable outcomes of the compost bedding materials process in CBP barns, allowing for its optimization, consequently reducing the time and energy spent on their optimization and allowing for simulation and assessment of compost bedding process modifications. The results of the current study may have important implications in the design and management of bedded pack barns.


2021 ◽  
Vol 8 ◽  
Author(s):  
Siaka Diarra ◽  
Sonny Lameta ◽  
Falaniko Amosa ◽  
Sanjay Anand

The increasing demand of wood shavings (WS) and sawdust (SD) by other industries and growing concerns of potential chemical contaminants from wood products have amplified research interest in alternative bedding materials for commercial poultry. Several alternative materials—corn cob (CC), straws (ST) and hays (HA), sand (SA), shredded papers (SP), rice hulls (RH), peanut hulls (PH), and gypsum (CaSO4.2H2O2)—can replace conventional ones in poultry houses, depending on availability, cost, and ability to absorb and adsorb moisture and provide the birds enough room to exhibit their natural behaviors. Alternative materials hold a brighter future as bedding materials, but more studies about their physicochemical properties and litter management practices for optimum poultry welfare are recommended.


2021 ◽  
pp. oemed-2021-107443
Author(s):  
Myrna M T de Rooij ◽  
Renate W Hakze-Van der Honing ◽  
Marcel M Hulst ◽  
Frank Harders ◽  
Marc Engelsma ◽  
...  

ObjectiveUnprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure.MethodsAir sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks’ housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR.ResultsInside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000–10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks’ housing units and surfaces contained SARS-CoV-2 RNA.ConclusionsInfected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.


animal ◽  
2021 ◽  
Vol 15 (7) ◽  
pp. 100260
Author(s):  
M.F.A. Farghly ◽  
Kh.M. Mahrose ◽  
R.G. Cooper ◽  
Kh.A. Metwally ◽  
M.Sh. Abougabal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document