Chapter 5: The Equations of Fluid Motion

Keyword(s):  
Author(s):  
Yu. P. Morozov

Based on the solution of the problem of non-stationary heat transfer during fluid motion in underground permeable layers, dependence was obtained to determine the operating time of the geothermal circulation system in the regime of constant and falling temperatures. It has been established that for a thickness of the layer H <4 m, the influence of heat influxes at = 0.99 and = 0.5 is practically the same, but for a thickness of the layer H> 5 m, the influence of heat inflows depends significantly on temperature. At a thickness of the permeable formation H> 20 m, the heat transfer at = 0.99 has virtually no effect on the thermal processes in the permeable formation, but at = 0.5 the heat influx, depending on the speed of movement, can be from 50 to 90%. Only at H> 50 m, the effect of heat influx significantly decreases and amounts, depending on the filtration rate, from 50 to 10%. The thermal effect of the rock mass with its thickness of more than 10 m, the distance between the discharge circuit and operation, as well as the speed of the coolant have almost no effect on the determination of the operating time of the GCS in constant temperature mode. During operation of the GCS at a dimensionless coolant temperature = 0.5, the velocity of the coolant is significant. With an increase in the speed of the coolant in two times, the error changes by 1.5 times.


Author(s):  
Timur A. Ishmuratov ◽  
Rif G. Sultanov ◽  
Milyausha N. Khusnutdinova

The study is devoted to the mathematical description of the process of oil outflow in places of leakage of the tubing string, which allows a computer to locate a leakage in the tubing. The authors propose methodology for identifying defects in the tubing and determining the location of the leak. The uniqueness of this methodology lies in quick determination of the place of leakage without the use of specialists, sophisticated and specialized equipment. Mathematical modeling of oil flow in the tubing requires the apparatus of continuum mechanics. It is a general belief that the movement of oil in the pipe flows at low speeds due to its outflow from the hole. Using the general equations of mass and energy balance, the authors have obtained differential equations of fluid motion in a vertical pipe in the process of its outflow from the tubing and in the process of injection. Analytical expressions are the solution to these equations, as they can help in estimating the degree of damage and its location, as well as the feasibility of its eliminating. The results show that an increase in the leakage and injection times leads to improving accuracy of locating damage. Thus, when conducting various geological and technical measures (GTM) at the well, it is possible to assess the presence of leakage and its intensity when deciding on the repair of tubing.


Author(s):  
Sauro Succi

This chapter presents the main techniques to incorporate the effects of external and/or internal forces within the LB formalism. This is a very important task, for it permits us to access a wide body of generalized hydrodynamic applications whereby fluid motion couples to a variety of additional physical aspects, such as gravitational and electric fields, potential energy interactions, chemical reactions and many others. It should be emphasized that while hosting a broader and richer phenomenology than “plain” hydrodynamics, generalized hydrodynamics still fits the hydrodynamic picture of weak departure from suitably generalized local equilibria. This class is all but an academic curiosity; for instance, it is central to the fast-growing science of Soft Matter, a scientific discipline which has received an impressive boost in the past decades, under the drive of micro- and nanotechnological developments and major strides in biology and life sciences at large.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 448
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al2O3) nanoparticles which are added into water to form Cu-Al2O3/water nanofluid. The stagnation point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a similarity transformation and numerical results are obtained via the boundary value problem solver (bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the hybrid nanoparticles (32.37%).


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 334
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

Some unsteady motions of incompressible upper-convected Maxwell (UCM) fluids with exponential dependence of viscosity on the pressure are analytically studied. The fluid motion between two infinite horizontal parallel plates is generated by the lower plate, which applies time-dependent shear stresses to the fluid. Exact expressions, in terms of standard Bessel functions, are established both for the dimensionless velocity fields and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain. They represent the first exact solutions for unsteady motions of non-Newtonian fluids with pressure-dependent viscosity. The similar solutions corresponding to the flow of the same fluids due to an exponential shear stress on the boundary as well as the solutions of ordinary UCM fluids performing the same motions are obtained as limiting cases of present results. Furthermore, known solutions for unsteady motions of the incompressible Newtonian fluids with/without pressure-dependent viscosity induced by oscillatory or constant shear stresses on the boundary are also obtained as limiting cases. Finally, the influence of physical parameters on the fluid motion is graphically illustrated and discussed. It is found that fluids with pressure-dependent viscosity flow are slower when compared to ordinary fluids.


1985 ◽  
Vol 40 (8) ◽  
pp. 789-799 ◽  
Author(s):  
A. F. Borghesani

The Navier-Stokes equations for the fluid motion induced by a disk rotating inside a cylindrical cavity have been integrated for several values of the boundary layer thickness d. The equivalence of such a device to a rotating disk immersed in an infinite medium has been shown in the limit as d → 0. From that solution and taking into account edge effect corrections an equation for the viscous torque acting on the disk has been derived, which depends only on d. Moreover, these results justify the use of a rotating disk to perform accurate viscosity measurements.


Sign in / Sign up

Export Citation Format

Share Document