Optimal Policy in Single-Server Multi-Class Queuing Systems with Abandonment

2019 ◽  
Author(s):  
Sina Ansari ◽  
Laurens Debo ◽  
Seyed Iravani
2007 ◽  
Vol 22 (1) ◽  
pp. 107-131 ◽  
Author(s):  
Dimitrios G. Pandelis

We consider two-stage tandem queuing systems with dedicated servers in each station and flexible servers that can serve in both stations. We assume exponential service times, linear holding costs, and operating costs incurred by the servers at rates proportional to their speeds. Under conditions that ensure the optimality of nonidling policies, we show that the optimal allocation of flexible servers is determined by a transition-monotone policy. Moreover, we present conditions under which the optimal policy can be explicitly determined.


2019 ◽  
Vol 34 (4) ◽  
pp. 507-521
Author(s):  
Urtzi Ayesta ◽  
Balakrishna Prabhu ◽  
Rhonda Righter

We consider single-server scheduling to minimize holding costs where the capacity, or rate of service, depends on the number of jobs in the system, and job sizes become known upon arrival. In general, this is a hard problem, and counter-intuitive behavior can occur. For example, even with linear holding costs the optimal policy may be something other than SRPT or LRPT, it may idle, and it may depend on the arrival rate. We first establish an equivalence between our problem of deciding which jobs to serve when completed jobs immediately leave, and a problem in which we have the option to hold on to completed jobs and can choose when to release them, and in which we always serve jobs according to SRPT. We thus reduce the problem to determining the release times of completed jobs. For the clearing, or transient system, where all jobs are present at time 0, we give a complete characterization of the optimal policy and show that it is fully determined by the cost-to-capacity ratio. With arrivals, the problem is much more complicated, and we can obtain only partial results.


1994 ◽  
Vol 26 (02) ◽  
pp. 474-497 ◽  
Author(s):  
Mark P. Van Oyen ◽  
Demosthenis Teneketzis

We present structural properties of optimal policies for the problem of scheduling a single server in a forest network of N queues (without arrivals) subject to switching penalties. In addition to linear holding costs, we impose either lump sum switching costs or batch set-up delays which are incurred at each instant the server processes a job in a queue different from the previous one. We use reward rate notions to unearth conditions on the holding costs and service distributions for which an exhaustive policy is optimal. For the case of two nodes connected probabilistically in tandem, we explicitly define an optimal policy under similar conditions.


1994 ◽  
Vol 26 (2) ◽  
pp. 474-497 ◽  
Author(s):  
Mark P. Van Oyen ◽  
Demosthenis Teneketzis

We present structural properties of optimal policies for the problem of scheduling a single server in a forest network of N queues (without arrivals) subject to switching penalties. In addition to linear holding costs, we impose either lump sum switching costs or batch set-up delays which are incurred at each instant the server processes a job in a queue different from the previous one. We use reward rate notions to unearth conditions on the holding costs and service distributions for which an exhaustive policy is optimal. For the case of two nodes connected probabilistically in tandem, we explicitly define an optimal policy under similar conditions.


2008 ◽  
Vol 22 (3) ◽  
pp. 301-332 ◽  
Author(s):  
Nilay Tanik Argon ◽  
Serhan Ziya ◽  
Rhonda Righter

Motivated by the patient triage problem in emergency response, we consider a single-server clearing system in which jobs might abandon the system if they are not taken into service within their “lifetime.” In this system, jobs are characterized by their lifetime and service time distributions. Our objective is to dynamically determine the optimal or near-optimal order of service for jobs so as to minimize the total number of abandonments. We first show that if the jobs can be ordered in such a way that the job with the shortest lifetime (in the sense of hazard rate ordering) also has the shortest service time (in the sense of likelihood ratio ordering), then the optimal policy gives the highest priority to this “time-critical” job independently of the system state. For the case in which the jobs with shorter lifetimes have longer service times, we observed that the optimal policy generally has a complex structure that might depend on the type and number of jobs available. For this case, we provide partial characterizations of the optimal policy and obtain sufficient conditions under which a state-independent policy is optimal. Furthermore, we develop two state-dependent heuristic policies, and by means of a numerical study, we show that these heuristics perform well, especially when jobs abandon the system at a relatively faster rate when compared to service rates. Based on our analytical and numerical results, we develop several insights on patient triage in the immediate aftermath of a mass casualty event. For example, we conclude that in a worst-case scenario, where medical resources are overwhelmed with a large number of casualties who need immediate attention, it is crucial to implement state-dependent policies such as the heuristic policies proposed in this article.


2019 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Song Chew

In this paper, we look into a novel notion of the standard M/M/1 queueing system. In our study, we assume that there is a single server and that there are two types of customers: real and imaginary customers. Real customers are regular customers arriving into our queueing system in accordance with a Poisson process. There exist infinitely many imaginary customers residing in the system. Real customers have service priority over imaginary customers. Thus, the server always serves real (regular) customers one by one if there are real customers present in the system. After serving all real customers, the server immediately serves, one at a time, imaginary customers residing in the system. A newly arriving real customer presumably does not preempt the service of an imaginary customer and hence must wait in the queue for their service. The server immediately serves a waiting real customer upon service completion of the imaginary customer currently under service. All service times are identically, independently, and exponentially distributed. Since our systems are characterized by continuous service by the server, we dub our systems continuous-service M/M/1 queueing systems. We conduct the steady-state analysis and determine common performance measures of our systems. In addition, we carry out simulation experiments to verify our results. We compare our results to that of the standard M/M/1 queueing system, and draw interesting conclusions.


2002 ◽  
Vol 16 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Rhonda Righter

We consider a system with heterogeneous unreliable components that requires only one component to be turned on in order for it to operate. Repair workers may have different skills and may be unavailable for random periods of time. The problem is to determine a usage and repair policy to maximize system availability. We give conditions under which the optimal usage policy is to always use, or turn on, the component with the shortest repair time, and the optimal repair policy is to always repair the most reliable component (with the smallest failure rate). We fully characterize the optimal policy when there are only two components. Our system is equivalent to a closed system with multiple single-server queues, where the objective is to minimize server idle time at one of the queues.


Sign in / Sign up

Export Citation Format

Share Document