A Homotopy Method for Finding All Solutions of a Multiparameter Eigenvalue Problem

2016 ◽  
Vol 37 (2) ◽  
pp. 550-571 ◽  
Author(s):  
Bo Dong ◽  
Bo Yu ◽  
Yan Yu
2015 ◽  
Vol 30 (12) ◽  
pp. 1550062 ◽  
Author(s):  
Wolfgang Lucha ◽  
Franz F. Schöberl

We constrain the possible bound-state solutions of the spinless Salpeter equation (the most obvious semirelativistic generalization of the nonrelativistic Schrödinger equation) with an interaction between the bound-state constituents given by the kink-like potential (a central potential of hyperbolic-tangent form) by formulating a bunch of very elementary boundary conditions to be satisfied by all solutions of the eigenvalue problem posed by a bound-state equation of this type, only to learn that all results produced by a procedure very much liked by some quantum-theory practitioners prove to be in severe conflict with our expectations.


Author(s):  
Wen-Wei Lin ◽  
Gerhard Lutzer

AbstractThe homotopy method is used to find all eigenpairs of a generalised symmetric eigenvalue problem Ax = λBx with positive definite B. The determination of n eigenpairs (x, λ) is reduced to curve tracing of n disjoint smooth curves in Rn × R × [0, 1]. The method might be attractive if A and B are sparse symmetric. In this paper it is shown that the method will work for almost all symmetric tridiagonal matrices A and B.


Author(s):  
A. Källström ◽  
B. D. Sleeman

SynopsisThe main result of this paper is to establish the completeness of the eigenfunctions for the multiparameter eigenvalue problem defined by the system of ordinary differential equations0 ≤ x, ≤ 1, r = 1, …, k, subject to the Sturm-Liouville boundary conditionsr = 1, …, k. In addition it is assumed that the coefficients ars of the spectral parameters λs, satisfy the ellipticity condition , s = 1, …, k, for all xrɛ[0, 1], r = 1, …, k, and some real k-tuple μ1, …, μk and where is the co-factor of asr in the determinant . The theory developed here contrasts with the results known when …k is assumed non-vanishing for all xrɛ[0,1].


1981 ◽  
Vol 33 (1) ◽  
pp. 210-228 ◽  
Author(s):  
Paul Binding

We shall consider a multiparameter eigenvalue problem of the form(1.1)where λ ∈ Rk while Tn and Vn(λ) are self-adjoint linear operators on a Hilbert space Hn. If λ = (λ1, …, λk) ∈ Rk and satisfy (1.1) then we call λ an eigenvalue, x an eigenvector and (λ, x) an eigenpair. While our main thrust is towTards the general case of several parameters λn, the method ultimately involves reduction to a sequence of one parameter problems. Our chief contributions are (i) to generalise the conditions under which this reduction is possible, and (ii) to develop methods for the one parameter problem particularly suited to the multiparameter application. For example, we give rather general results on the magnitude and direction of the movement of non-linear eigenvalues under perturbation.


1996 ◽  
Vol 39 (1) ◽  
pp. 119-132 ◽  
Author(s):  
Hans Volkmer

Results are given for the asymptotic spectrum of a multiparameter eigenvalue problem in Hilbert space. They are based on estimates for eigenvalues derived from the minim un-maximum principle. As an application, a multiparameter Sturm-Liouville problem is considered.


Sign in / Sign up

Export Citation Format

Share Document