scholarly journals On the Kinetic Equation in Zakharov's Wave Turbulence Theory for Capillary Waves

2018 ◽  
Vol 50 (2) ◽  
pp. 2020-2047 ◽  
Author(s):  
Toan T. Nguyen ◽  
Minh-Binh Tran
2018 ◽  
Vol 850 ◽  
pp. 803-843 ◽  
Author(s):  
M. Berhanu ◽  
E. Falcon ◽  
L. Deike

We study experimentally the dynamics and statistics of capillary waves forced by random steep gravity waves mechanically generated in the laboratory. Capillary waves are produced here by gravity waves from nonlinear wave interactions. Using a spatio-temporal measurement of the free surface, we characterize statistically the random regimes of capillary waves in the spatial and temporal Fourier spaces. For a significant wave steepness (0.2–0.3), power-law spectra are observed both in space and time, defining a turbulent regime of capillary waves transferring energy from the large scale to the small scale. Analysis of temporal fluctuations of the spatial spectrum demonstrates that the capillary power-law spectra result from the temporal averaging over intermittent and strong nonlinear events transferring energy to the small scale in a fast time scale, when capillary wave trains are generated in a way similar to the parasitic capillary wave generation mechanism. The frequency and wavenumber power-law exponents of the wave spectra are found to be in agreement with those of the weakly nonlinear wave turbulence theory. However, the energy flux is not constant through the scales and the wave spectrum scaling with this flux is not in good agreement with wave turbulence theory. These results suggest that theoretical developments beyond the classic wave turbulence theory are necessary to describe the dynamics and statistics of capillary waves in a natural environment. In particular, in the presence of broad-scale viscous dissipation and strong nonlinearity, the role of non-local and non-resonant interactions should be reconsidered.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Eric Falcon ◽  
Nicolas Mordant

The last decade has seen a significant increase in the number of studies devoted to wave turbulence. Many deal with water waves, as modeling of ocean waves has historically motivated the development of weak turbulence theory, which addresses the dynamics of a random ensemble of weakly nonlinear waves in interaction. Recent advances in experiments have shown that this theoretical picture is too idealized to capture experimental observations. While gravity dominates much of the oceanic spectrum, waves observed in the laboratory are in fact gravity–capillary waves, due to the restricted size of wave basins. This richer physics induces many interleaved physical effects far beyond the theoretical framework, notably in the vicinity of the gravity–capillary crossover. These include dissipation, finite–system size effects, and finite nonlinearity effects. Simultaneous space-and-time-resolved techniques, now available, open the way for a much more advanced analysis of these effects. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1067
Author(s):  
Denys Dutykh

This article is devoted to Feller’s diffusion equation, which arises naturally in probability and physics (e.g., wave turbulence theory). If discretized naively, this equation may represent serious numerical difficulties since the diffusion coefficient is practically unbounded and most of its solutions are weakly divergent at the origin. In order to overcome these difficulties, we reformulate this equation using some ideas from the Lagrangian fluid mechanics. This allows us to obtain a numerical scheme with a rather generous stability condition. Finally, the algorithm admits an elegant implementation, and the corresponding Matlab code is provided with this article under an open source license.


2011 ◽  
Vol 375 (35) ◽  
pp. 3149-3155 ◽  
Author(s):  
Bertrand Kibler ◽  
Kamal Hammani ◽  
Claire Michel ◽  
Christophe Finot ◽  
Antonio Picozzi

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 823
Author(s):  
Sergey Nazarenko ◽  
Avy Soffer ◽  
Minh-Binh Tran

We derive new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form compared to the four-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread with time, and this fact answers the “weak turbulence” question for the nonlinear Schrödinger equation with random potentials. We also derive Ohm’s law for the porous medium equation.


2007 ◽  
Vol 73 (5) ◽  
pp. 723-730 ◽  
Author(s):  
FOUAD SAHRAOUI ◽  
SÉBASTIEN GALTIER ◽  
GÉRARD BELMONT

AbstractHall magnetohydrodynamics (HMHD) is a mono-fluid approximation extending the validity domain of the ordinary MHD system to spatial scales down to a fraction of the ion skin depth or frequencies comparable to the ion gyrofrequency. In the paper by Galtier (2006 J. Plasma Physics), an incompressible limit of the HMHD system is used for developing a wave turbulence theory. Nevertheless, the possibility and the consequences of such an approximation are different in HMHD and in MHD. Here, we analyse these differences by investigating the properties of the HMHD equations in the incompressible limit: the existence of linear modes, their dispersion relations and polarizations. We discuss the possibility of replacing the fluid closure equation of a complete HMHD system by an incompressibility hypothesis and determine the validity range.


Sign in / Sign up

Export Citation Format

Share Document