scholarly journals Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations

2021 ◽  
Vol 20 (4) ◽  
pp. 1683-1714
Author(s):  
Rachel Nicks ◽  
Abigail Cocks ◽  
Daniele Avitabile ◽  
Alan Johnston ◽  
Stephen Coombes
1996 ◽  
Vol 06 (09) ◽  
pp. 1665-1671 ◽  
Author(s):  
J. BRAGARD ◽  
J. PONTES ◽  
M.G. VELARDE

We consider a thin fluid layer of infinite horizontal extent, confined below by a rigid plane and open above to the ambient air, with surface tension linearly depending on the temperature. The fluid is heated from below. First we obtain the weakly nonlinear amplitude equations in specific spatial directions. The procedure yields a set of generalized Ginzburg–Landau equations. Then we proceed to the numerical exploration of the solutions of these equations in finite geometry, hence to the selection of cells as a result of competition between the possible different modes of convection.


1971 ◽  
Vol 47 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Jon Lee

The truncated Burgers models have a unique equilibrium state which is defined continuously for all the Reynolds numbers and attainable from a realizable class of initial disturbances. Hence, they represent a sequence of convergent approximations to the original (untruncated) Burgers problem. We have pointed out that consideration of certain degenerate equilibrium states can lead to the successive turbulence-turbulence transitions and finite-jump transitions that were suggested by Case & Chiu. As a prototype of the Navier–Stokes equations, Burgers model can simulate the initial-value type of numerical integration of the Fourier amplitude equations for a turbulent channel flow. Thus, the Burgers model dynamics display certain idiosyncrasies of the actual channel flow problem described by a truncated set of Fourier amplitude equations, which includes only a modest number of modes due to the limited capability of the computer at hand.


Author(s):  
Bappaditya Banerjee ◽  
Anil K. Bajaj

Abstract Dynamical systems with two degrees-of-freedom, with quadratic nonlinearities and parametric excitations are studied in this analysis. The 1:2 superharmonic internal resonance case is analyzed. The method of harmonic balance is used to obtain a set of four first-order amplitude equations that govern the dynamics of the first-order approximation of the response. An analytical technique, based on Melnikov’s method is used to predict the parameter range for which chaotic dynamics exist in the undamped averaged system. Numerical studies show that chaotic responses are quite common in these quadratic systems and chaotic responses occur even in presence of damping.


2018 ◽  
Vol 45 (2) ◽  
pp. 133-145 ◽  
Author(s):  
R. Martin ◽  
D. J. Chappell ◽  
N. Chuzhanova ◽  
J. J. Crofts

Scholarpedia ◽  
2006 ◽  
Vol 1 (6) ◽  
pp. 1373 ◽  
Author(s):  
Stephen Coombes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document