scholarly journals Testing Membership in Languages that Have Small Width Branching Programs

2002 ◽  
Vol 31 (5) ◽  
pp. 1557-1570 ◽  
Author(s):  
Ilan Newman
2017 ◽  
Vol 837 ◽  
pp. 341-380 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams

The evolution of upper ocean currents involves a set of complex, poorly understood interactions between submesoscale turbulence (e.g. density fronts and filaments and coherent vortices) and smaller-scale boundary-layer turbulence. Here we simulate the lifecycle of a cold (dense) filament undergoing frontogenesis in the presence of turbulence generated by surface stress and/or buoyancy loss. This phenomenon is examined in large-eddy simulations with resolved turbulent motions in large horizontal domains using${\sim}10^{10}$grid points. Steady winds are oriented in directions perpendicular or parallel to the filament axis. Due to turbulent vertical momentum mixing, cold filaments generate a potent two-celled secondary circulation in the cross-filament plane that is frontogenetic, sharpens the cross-filament buoyancy and horizontal velocity gradients and blocks Ekman buoyancy flux across the cold filament core towards the warm filament edge. Within less than a day, the frontogenesis is arrested at a small width,${\approx}100~\text{m}$, primarily by an enhancement of the turbulence through a small submesoscale, horizontal shear instability of the sharpened filament, followed by a subsequent slow decay of the filament by further turbulent mixing. The boundary-layer turbulence is inhomogeneous and non-stationary in relation to the evolving submesoscale currents and density stratification. The occurrence of frontogenesis and arrest are qualitatively similar with varying stress direction or with convective cooling, but the detailed evolution and flow structure differ among the cases. Thus submesoscale filament frontogenesis caused by boundary-layer turbulence, frontal arrest by frontal instability and frontal decay by forward energy cascade, and turbulent mixing are generic processes in the upper ocean.


2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2006 ◽  
Vol 03 (02) ◽  
pp. 269-295 ◽  
Author(s):  
OLIVIER GUES ◽  
JEFFREY RAUCH

Semilinear hyperbolic problems with source terms piecewise smooth and discontinuous across characteristic surfaces yield similarly piecewise smooth solutions. If the discontinuous source is replaced with a smooth transition layer, the discontinuity of the solution is replaced by a smooth internal layer. In this paper we describe how the layer structure of the solution can be computed from the layer structure of the source. The key idea is to use a transmission problem strategy for the problem with the smooth internal layer. That leads to an anastz different from the obvious candidates. The obvious candidates lead to overdetermined equations for correctors. With the transmission problem strategy we compute infinitely accurate expansions.


Sign in / Sign up

Export Citation Format

Share Document