From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees

2003 ◽  
Vol 81 (12) ◽  
pp. 1247-1266 ◽  
Author(s):  
Glenn T Howe ◽  
Sally N Aitken ◽  
David B Neale ◽  
Kathleen D Jermstad ◽  
Nicholas C Wheeler ◽  
...  

Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits than for other quantitative traits and allozymes. Therefore, these traits appear to be under strong natural selection. Nonetheless, high levels of genetic variation persist within populations. The genetic control of cold adaptation traits ranges from weak to strong, with phenological traits having the highest heritabilities. Within-population genetic correlations among traits range from negligible to moderate. Generally, bud phenology and cold hardiness in the fall are genetically uncorrelated with bud phenology and cold hardiness in the spring. Analyses of quantitative trait loci indicate that cold adaptation traits are mostly controlled by multiple genes with small effects and that quantitative trait loci × environment interactions are common. Given this inherent complexity, we suggest that future research should focus on identifying and developing markers for cold adaptation candidate genes, then using multilocus, multi allelic analytical techniques to uncover the relationships between genotype and phenotype at both the individual and population levels. Ultimately, these methods may be useful for predicting the performance of genotypes in breeding programs and for better understanding the evolutionary ecology of forest trees.Key words: association genetics, cold hardiness, dormancy, genecology, bud phenology, quantitative trait loci.

2010 ◽  
Vol 4 ◽  
pp. BBI.S4153 ◽  
Author(s):  
Song Wu ◽  
Jie Yang ◽  
Youjun Huang ◽  
Yao Li ◽  
Tongming Yin ◽  
...  

A pseudo-testcross pedigree is widely used for mapping quantitative trait loci (QTL) in outcrossing species, but the model for analyzing pseudo-testcross data borrowed from the inbred backcross design can only detect those QTLs that are heterozygous only in one parent. In this study, an intercross model that incorporates the high heterozygosity and phase uncertainty of outcrossing species was used to reanalyze a published data set on QTL mapping in poplar trees. Several intercross QTLs that are heterozygous in both parents were detected, which are responsible not only for biomass traits, but also for their genetic correlations. This study provides a more complete identification of QTLs responsible for economically important biomass traits in poplars.


2005 ◽  
Vol 15 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Nicholas C. Wheeler ◽  
Kathleen D. Jermstad ◽  
Konstantin Krutovsky ◽  
Sally N. Aitken ◽  
Glenn T. Howe ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1959-1973 ◽  
Author(s):  
Qin Zhang ◽  
Didier Boichard ◽  
Ina Hoeschele ◽  
Cynthia Ernst ◽  
Andre Eggen ◽  
...  

Abstract Quantitative trait loci (QTL) affecting milk production and health of dairy cattle were mapped in a very large Holstein granddaughter design. The analysis included 1794 sons of 14 sires and 206 genetic markers distributed across all 29 autosomes and flanking an estimated 2497 autosomal cM using Kosambi's mapping function. All families were analyzed jointly with least-squares (LS) and variance components (VC) methods. A total of 6 QTL exceeding approximate experiment-wise significance thresholds, 24 QTL exceeding suggestive thresholds, and 34 QTL exceeding chromosome-wise thresholds were identified. Significance thresholds were determined via data permutation (for LS analysis) and chi-square distribution (for VC analysis). The average bootstrap confidence interval for the experiment-wise significant QTL was 48 cM. Some chromosomes harbored QTL affecting several traits, and these were always in coupling phase, defined by consistency with genetic correlations among traits. Chromosome 17 likely harbors 2 QTL affecting milk yield, and some other chromosomes showed some evidence for 2 linked QTL affecting the same trait. In each of these cases, the 2 QTL were in repulsion phase in those families appearing to be heterozygous for both QTL, a finding which supports the build-up of linkage disequilibrium due to selection.


2001 ◽  
Vol 102 (8) ◽  
pp. 1152-1158 ◽  
Author(s):  
K. D. Jermstad ◽  
D. L. Bassoni ◽  
N. C. Wheeler ◽  
T. S. Anekonda ◽  
S. N. Aitken ◽  
...  

1995 ◽  
Author(s):  
Gloria A. Moore ◽  
Gozal Ben-Hayyim ◽  
Charles L. Guy ◽  
Doron Holland

As is true for all crops, production of Citrus fruit is limited by traits whose characteristics are the products of many genes (i.e. cold hardiness). In order to modify these traits by marker aided selection or molecular genetic techniques, it is first necessary to map the relevant genes. Mapping of quantitative trait loci (QTLs) in perennial plants has been extremely difficult, requiring large numbers of mature plants. Production of suitable mapping populations has been inhibited by aspects of reproductive biology (e.g. incompatibility, apomixis) and delayed by juvenility. New approaches promise to overcome some of these obstacles. The overall objective of this project was to determine whether QTLs for environmental stress tolerance could be effectively mapped in the perennial crop Citrus, using an extensive linkage map consisting of various types of molecular markers. Specific objectives were to: 1) Produce a highly saturated genetic linkage map of Citrus by continuing to place molecular markers of several types on the map. 2) Exploiting recently developed technology and already characterized parental types, determine whether QTLs governing cold acclimation can be mapped using very young seedling populations. 3) Determine whether the same strategy can be transferred to a different situation by mapping QTLs influencing Na+ and C1- exclusion (likely components of salinity tolerance) in the already characterized cross and in new alternative crosses. 4) Construct a YAC library of the citrus genome for future mapping and cloning.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 1111-1127
Author(s):  
C Jiang ◽  
Z B Zeng

Abstract We present in this paper models and statistical methods for performing multiple trait analysis on mapping quantitative trait loci (QTL) based on the composite interval mapping method. By taking into account the correlated structure of multiple traits, this joint analysis has several advantages, compared with separate analyses, for mapping QTL, including the expected improvement on the statistical power of the test for QTL and on the precision of parameter estimation. Also this joint analysis provides formal procedures to test a number of biologically interesting hypotheses concerning the nature of genetic correlations between different traits. Among the testing procedures considered are those for joint mapping, pleiotropy, QTL by environment interaction, and pleiotropy vs. close linkage. The test of pleiotropy (one pleiotropic QTL at a genome position) vs. close linkage (multiple nearby nonpleiotropic QTL) can have important implications for our understanding of the nature of genetic correlations between different traits in certain regions of a genome and also for practical applications in animal and plant breeding because one of the major goals in breeding is to break unfavorable linkage. Results of extensive simulation studies are presented to illustrate various properties of the analyses.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 580
Author(s):  
John S. Mortenson ◽  
Blair L. Waldron ◽  
Steve R. Larson ◽  
Kevin B. Jensen ◽  
Lee R. DeHaan ◽  
...  

It has been hypothesized that the genetic control of forage traits, especially biomass, for grass plants growing as spaced-plants versus swards is different. Likewise, the genetic control of compatibility in grass–legume polyculture mixtures is assumed to be different than for forage production in a grass monoculture. However, these hypotheses are largely unvalidated, especially at the DNA level. This study used an intermediate wheatgrass mapping population to examine the effect of three competition environments (spaced-plants, polyculture, and monoculture) on classical quantitative genetic parameters and quantitative trait loci (QTL) identification for biomass, morphology, and forage nutritive value. Moderate to high heritable variation was observed for biomass, morphological traits, and nutritive value within all three environments (H ranged from 0.50 to 0.87). Genetic correlations (rG) among environments for morphology and nutritive value were predominantly high, however, were moderately-low (0.30 to 0.48) for biomass. Six biomass QTL were identified, including three on linkage groups (LG) 1, 6, and 15 that were only expressed in the monoculture environment. Moreover, three biomass QTL on LG 10, 14, and 15 exhibited significant QTL by environment interactions. This study verified that the genetic control of grass biomass in a monoculture versus a grass–legume mixture is only partially the same, with additional genes expressed in monoculture, and that biomass in widely spaced-plants versus swards is predominantly under different genetic control. These results indicate that selection for improved grass biomass will be most successful when conducted within the targeted monoculture or polyculture sward environment per se.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 837-845 ◽  
Author(s):  
Barbara E Frewen ◽  
Tony H H Chen ◽  
Glenn T Howe ◽  
Joel Davis ◽  
Antje Rohde ◽  
...  

Abstract The genetic control of bud phenology in hybrid poplar was studied by mapping quantitative trait loci (QTL) affecting the timing of autumn bud set and spring bud flush. The founders of the mapping pedigree were collected from widely separated latitudes to maximize segregating variation for dormancy-related traits in the F2 generation—the female Populus trichocarpa parent is from Washington State (48°N) and the male P. deltoides parent is from Texas (31°N). Bud set and bud flush timing were measured on the F2 generation in a replicated clonal field trial. Using a linkage map constructed of AFLP and microsatellite markers, three QTL controlling bud set and six QTL controlling bud flush were detected. Additionally, five candidate genes believed to be involved in perception of photoperiod (PHYB1, PHYB2) or transduction of abscisic acid response signals (ABI1B, ABI1D, and ABI3) were placed on the QTL map. PHYB2 and ABI1B were found to be coincident with QTL affecting bud set and bud flush.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
R Hall ◽  
R Müllenbach ◽  
S Huss ◽  
R Alberts ◽  
K Schughart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document