Genetic diversity and population structure of boreal white spruce (Picea glauca) in pristine conifer-dominated and mixedwood forest stands

2005 ◽  
Vol 83 (9) ◽  
pp. 1096-1105 ◽  
Author(s):  
Om P. Rajora ◽  
Ishminder K. Mann ◽  
Yong-Zhong Shi

White spruce ( Picea glauca (Moench) Voss) is a characteristic primary species of the Canadian boreal forest region, where it occurs in conifer-dominated and mixedwood forest types. Genetic diversity and population structure of white spruce may differ between the conifer-dominated and mixedwood forest types owing to the inherent differences in stand structure and dynamics. The objective of our study was to determine genetic diversity and population structure of pristine white spruce stands as they occur in conifer-dominated and mixedwood forest types at the EMEND (Ecosystem Management Emulating Natural Disturbance) study sites in northern Alberta. Nuclear microsatellite DNA markers were used to examine genetic diversity and population structure of 16 pristine natural old-growth (≥100 years) white spruce stands (subpopulations) of fire origin; 8 from conifer-dominated and 8 from neighboring mixedwood forest types. High levels of genetic diversity were observed, as expected. The genetic diversity and genetic constitution of white spruce were similar between the conifer-dominated and mixedwood forest types. Most of the genetic variation resided within subpopulations, with only about 2% genetic differentiation detected among 16 subpopulations as well as among 8 subpopulations within the same forest type. The mean genetic distances among subpopulations within and between the forest types were similar. Our study suggests that white spruce genetic resources are similar in the conifer-dominated and mixedwood forest types located in the EMEND study area in northern Alberta, and it provides the benchmarks for determining and monitoring the genetic diversity impacts of forest harvesting and forest fires.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Chunyan Ma ◽  
Longling Ouyang ◽  
Wei Chen ◽  
Ming Zhao ◽  
...  

AbstractIn order to provide valuable guidelines for the conservation of germplasm of Lateolabrax maculatus, the genetic diversity and population structure analysis were evaluated for eight geographic populations along coastal regions of China, using 11 microsatellite DNA markers. The genetic parameters obtained showed that, eight populations can be clustered into two groups, the Northern group and the Southern group, concordant with their geographical positions. The UPGMA tree constructed according to the Nei’s genetic distance along with the structure analysis and discriminant analysis of principal component also supported this result. This might be explained by the geographic separation and the divergent environmental conditions among the populations. It's worth noting that, QD (Qingdao) population from northern area was assigned to the Southern group and showed a close genetic relationship and similar genetic constitution with the southern populations. We speculated that large scales of anthropogenic transportation of wild fries from QD populations to the southern aquaculture areas in history should be the primary cause. The populations from GY (Ganyu), RD (Rudong) and BH (Binhai) had higher genetic diversity and showed limited genetic exchange with other populations, indicating better conservation of the natural resources in these regions. All populations were indicated to have experienced bottleneck events in history.


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


1978 ◽  
Vol 56 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Ruey C. Tsay ◽  
Iain E. P. Taylor

A centre of genetic diversity for white spruce, Picea glauca (Moench) Voss, is suspected in and around a refugial region in the Yukon Territory. Seed from the refugium (30 samples), a neighbouring region (42 samples) and from southern Ontario (50 samples) was examined for isoenzymes of formic (FDH), glutamic (GDH), and lactic (LDH) dehydrogenases and cationic peroxidases (CP). FDH patterns were uniform. There were three GDH bands which appeared in five patterns. Eleven isoenzymes of LDH were detected in 21 patterns. There were 25 CP bands and the pattern from each collection (containing 7–13 bands) was unique.The results from GDH, LDH, and CP analyses revealed differences between seed from the refugium and the adjoining regions. The patterns for LDH supported the hypothesis that the refugium was a centre of diversity but the GDH and CP patterns were more diverse outside the refugium. The LDH and CP analyses showed that the genetic resources of the two regions in the Yukon were more diverse than those in southern Ontario. Analysis of divergence showed that these differences were significant at the 1% level of probability.


2005 ◽  
Vol 81 (4) ◽  
pp. 559-574 ◽  
Author(s):  
Philip G Comeau ◽  
Richard Kabzems ◽  
John McClarnon ◽  
Jean L Heineman

We describe a range of approaches for managing boreal mixedwood stands composed of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) in British Columbia and Alberta. Successful management of these complex forests requires a combination of well-defined objectives at the landscape level and flexible planning at the stand level. A variety of management strategies must be applied concurrently across the landscape to ensure that the natural mix of forest types and structural diversity is maintained. Selected approaches are discussed with regard to their suitability to particular stand conditions and sets of objectives, the types of tending and harvesting activities required, expected outcomes, and costs. The three approaches discussed are: 1) creation and management of two-storied intimate mixtures; 2) creation of a single-storied mixture of aspen and white spruce; and, 3) creation of a mosaic of discrete patches of each species. Key words: boreal mixedwood management, mixedwood silvicultural systems, aspen, white spruce, planning


2001 ◽  
Vol 31 (6) ◽  
pp. 943-949 ◽  
Author(s):  
M J.W Godt ◽  
J L Hamrick ◽  
M A Edwards-Burke ◽  
J H Williams

Genetic diversity within a white spruce (Picea glauca (Moench) Voss) seed orchard (consisting of 40 clones) and a jack pine (Pinus banksiana Lamb.) seed orchard (31 clones) was assessed and compared with genetic diversity in natural populations within the source area for the orchards. Genetic diversity was determined at 18 allozyme loci for seven white spruce populations and 27 loci for five jack pine populations, and the two orchards. Gene diversity maintained within the seed orchards (He = 0.157 for white spruce and 0.114 for jack pine) was similar to that found within the source area for each species (He = 0.164 and 0.114 for white spruce and jack pine, respectively). However, nine white spruce alleles and 12 jack pine alleles identified in the source area were not present in the seed orchards. These alleles occurred at low frequencies in the natural populations (mean frequency = 0.023 and 0.014 for white spruce and jack pine, respectively). Mean genetic identities between the seed orchards and their natural populations were high (>0.99), indicating that common allele occurrences and frequencies were similar between the orchards and their source area. One allele in the white spruce orchard and two in the jack pine seed orchard did not occur within the natural population samples. Simulations indicated that randomly reducing the number of clones within the seed orchards would decrease allelic richness slightly but would have little effect on overall gene diversity.


2013 ◽  
Vol 145 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Jaime Pinzon ◽  
John R. Spence ◽  
David W. Langor

AbstractSpiders (Araneae) were sampled in white spruce (Picea glauca (Moench) Voss (Pinaceae)) dominated stands from the ground and shrub layers, and from several overstorey strata to assess patterns in species composition and diversity (alpha and beta) along the vertical gradient (0–12 m above ground). Overall, 3070 adult spiders in 15 families and 76 species were collected, with the ground layer accounting for the highest species richness (40 species) followed by the mid-overstorey (36 spp.) and the shrub layers (33 species). Vertical stratification was apparent in the samples: richness clearly decreased with height, and species turnover between the ground, shrub, and mid-overstorey levels was evident, suggesting that species composition in each layer was highly distinctive. Within the mid-overstorey stratification was less obvious but both species richness and spider abundance were predicted significantly by height from the ground and branch size. Given the role of late-seral conifer stands for maintaining old-growth species, understanding diversity patterns across strata provides basic knowledge to support forest management decisions that effectively conserve spider species and assemblages. It is clearly important to include higher canopy layers in considering impacts of forestry on biodiversity in the boreal mixedwood.


Sign in / Sign up

Export Citation Format

Share Document