The biosystematics of the genus Lotus (Leguminosae) in Canada. II. Numerical chemotaxonomy

1968 ◽  
Vol 46 (5) ◽  
pp. 585-589 ◽  
Author(s):  
William F. Grant ◽  
Ilse I. Zandstra

A thin-layer chromatographic study of fluorescent compounds present in native (L. denticulatus, L. formosissimus, L. micranthus, L. pinnatus, L. purshianus) and introduced (L. corniculatus, L. krylovii, L.pedunculatus, L. tenuis) Canadian species of Lotus has been carried out and relationships of the species have been determined on the basis of the coefficients of association of these compounds. Chemical identification of the compounds was not attempted, but test reagents indicated a number to be phenolics. The analysis supported the general taxonomic relationships of the species based on a morphological and cytological study. Of the native species, L. pinnatus and L. formosissimus were the most closely related, with a coefficient of association of 83.33. Lotus denticulatus, the only native species with a chromosome number of n = 6, in general showed lower coefficients of association with the n = 7 species. Of the introduced species, all of which belong to the L. corniculatus group with a basic chromosome number of 6, L. krylovii and L. tenuis had the highest coefficient of association, 75.86. Based on their coefficients of association, both of these diploid species were more closely related to the tetraploid L. corniculatus than to the diploid L. pedunculatus.

1983 ◽  
Vol 8 ◽  
pp. 101-126 ◽  
Author(s):  
G. Vida ◽  
A. Major ◽  
T. Reichstein

Nine species of "Cheilantoid ferns" are known to grow in Macaronesia and the Mediterranean basin. Two of them (lacking a pseudo-indusium and having the basic chromosome number X = 29), both aggregate species which we prefer to retain in Notholaena, are not included in this study. The other seven species (with distinct pseudo-indusium and the basic chromosome number X = 30), which we accept as members of the genus Cheilanthes Sw. sensu stricto, were subjected to detailed genome analysis of their natural and experimentally produced hybrids and shown to represent an aggregate of four very distinct ancestral diploids and three allotetraploids. The latter must have once been formed by chromosome doubling in the three diploid hybrids of C. maderensis Lowe with the other three diploid species. Theoretically three more allotetraploids would be possible but their formation has obviously been prevented by the geographical separation of the three respective diploids. The most widely distributed of the tetraploids, i.e. C. pteridioides (Reich.) C.Chr. has also been resynthesized from its ancestors (still sympatric) under experimental conditions. The intermediate morphology of the allotetraploids (as compared with their diploid ancestors) is obviously the reason why their status and existence has so long escaped recognition in Europe. These seven species form a natural group and, in our opinion, should not be divided into sections.


Phytotaxa ◽  
2017 ◽  
Vol 331 (2) ◽  
pp. 185 ◽  
Author(s):  
MIN-JIE LI ◽  
XIAN-LIN GUO ◽  
JUAN LI ◽  
SONG-DONG ZHOU ◽  
QING LIU ◽  
...  

In the present study, we examined the karyotype data of subg. Cyathophora and sect. Bromatorrhiza, to determine some disputed karyotypes (e.g., A. spicatum and A. fasciculatum), and further to estimate the karyotype evolution along their phylogenetic frameworks. Our results revealed a fairly stable basic chromosome number (x = 8) in subg. Cyathophora, and we therefore revised x = 8 as the basic chromosome number of A. spicatum, rather than x = 10 mostly due to misidentifications concerning A. fasciculatum. The karyotype asymmetry analyses for subg. Cyathophora indicated that, the karyotype evolution for diploid species showing a high karyotype similarity was mainly due to intrachromosomal changes, while the interchromosomal changes were linked to the evolution of tetraploid populations. However, indeed different dysploid basic chromosome numbers (x = 7, 10, 11) and greatly different karyotype patterns occurred in sect. Bromatorrhiza, corresponding to the subsections revealed by molecular evidence. The combined evidence suggested that species with x = 11 compose a segmental allotriploid complex. It was also indicated that karyotype pattern of polyploids usually is closely related with  their diploid progenitors.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1771
Author(s):  
Radka Vozárová ◽  
Eliška Macková ◽  
David Vlk ◽  
Jana Řepková

The genus Trifolium L. is characterized by basic chromosome numbers 8, 7, 6, and 5. We conducted a genus-wide study of ribosomal DNA (rDNA) structure variability in diploids and polyploids to gain insight into evolutionary history. We used fluorescent in situ hybridization to newly investigate rDNA variation by number and position in 30 Trifolium species. Evolutionary history among species was examined using 85 available sequences of internal transcribed spacer 1 (ITS1) of 35S rDNA. In diploid species with ancestral basic chromosome number (x = 8), one pair of 5S and 26S rDNA in separate or adjacent positions on a pair of chromosomes was prevalent. Genomes of species with reduced basic chromosome numbers were characterized by increased number of signals determined on one pair of chromosomes or all chromosomes. Increased number of signals was observed also in diploids Trifolium alpestre and Trifolium microcephalum and in polyploids. Sequence alignment revealed ITS1 sequences with mostly single nucleotide polymorphisms, and ITS1 diversity was greater in diploids with reduced basic chromosome numbers compared to diploids with ancestral basic chromosome number (x = 8) and polyploids. Our results suggest the presence of one 5S rDNA site and one 26S rDNA site as an ancestral state.


PhytoKeys ◽  
2021 ◽  
Vol 187 ◽  
pp. 207-227
Author(s):  
Elizaveta Yu. Mitrenina ◽  
Andrey S. Erst ◽  
Lorenzo Peruzzi ◽  
Mikhail V. Skaptsov ◽  
Hiroshi Ikeda ◽  
...  

Comparative karyomorphological analyses of six out of the eight white-flowered species of Eranthis sect. Shibateranthis have been carried out. All studied specimens of E. byunsanensis, E. lobulata, E. pinnatifida, and E. stellata had a somatic chromosome number 2n = 16 with basic chromosome number x = 8. On the contrary, E. tanhoensis and E. sibirica had a basic chromosome number x = 7. The specimens of E. tanhoensis were diploid with 2n = 14, while the specimens of E. sibirica were polyploid with 2n = 42. Monoploid chromosome sets of the investigated diploid species had 4–5 metacentric chromosomes and 2–4 submetacentric/subtelocentric/acrocentric chromosomes. The highest level of interchromosomal asymmetry, estimated via CVCL, was found in E. byunsanensis and E. pinnatifida. The highest levels of intrachromosomal asymmetry (MCA) and heterogeneity in centromere position (CVCI) were found in E. lobulata and E. byunsanensis, while E. sibirica had the most symmetric karyotype. A multivariate PCoA analysis of basic karyotype parameters (2n, x, THL, CVCL, MCA, and CVCI) highlighted no overlap among species accessions, which was also confirmed by LDA. The average absolute monoploid DNA content (1Cx) of the 23 investigated samples of six Eranthis species varied from 9.26 ± 0.25 pg in E. sibirica to 15.93 ± 0.32 pg in E. stellata. Overall karyological affinity was highlighted between E. lobulata and E. stellata, on one side, and between E. byunsanensis and E. pinnatifida, on the other side. Interestingly, there was no significant correlation between total haploid (monoploid) chromosome length (THL) and 1Cx values in these species.


Author(s):  
Aakriti Bhandari ◽  
Harminder Singh ◽  
Amber Srivastava ◽  
Puneet Kumar ◽  
G. S. Panwar ◽  
...  

Abstract Background Sophora mollis Royle (family Fabaceae, subfamily-Papilionaceae) is a multipurpose legume distributed in plains and foothills of the North-West Himalaya to Nepal and is facing high risk of extinction due to habitat loss and exploitation by the local people for its fuel and fodder values. Therefore, the present study was conducted to standardize a micropropagation protocol for Sophora mollis by using shoot tip explants and to study the meiotic chromosome count in the species. Results Multiple shoots were induced in shoot tip explants of Sophora mollis in Murashige and Skoog medium supplemented with different concentrations of cytokinins alone (BAP, TDZ, and Kinetin) and in combination with varying concentrations of NAA. MS medium supplemented with BAP (8.9 μM) was observed to be the optimal medium for multiple shoot induction and maximum 25.32 shoots per explant was obtained with average length of 4.5 ± 0.8 cm. In vitro developed shoots were transferred onto rooting media supplemented with different concentrations of auxin (IAA, IBA, and NAA). Maximum 86% rooting was observed in half-strength MS medium supplemented with 21.20 μM NAA with an average of 21.26 roots per culture. In vitro raised plantlets were adapted to greenhouse for better acclimatization and 60% plants were successfully transferred to the open environment. Based on the chromosome counts available from the literature and the current study, the species tend to show a basic chromosome number of x = 9. Conclusion The micropropagation protocol standardized can be helpful for the ex situ mass multiplication and germplasm conservation of the endangered species. Moreover, the ex situ conservation approach will be helpful in actively bridging the gap between ex situ and in situ approaches through the reintroduction of species in the wild. The cytological studies revealed the basic chromosome number x = 9 of the species.


Bothalia ◽  
1998 ◽  
Vol 28 (1) ◽  
pp. 83-90 ◽  
Author(s):  
N. C. Visser ◽  
J. J. Spies

A basic chromosome number of x = 9 has been confirmed for Cenchrus ciliaris L. Polyploidy is common and levels vary from tetraploid to hexaploid. Aneuploidv is reported for a single specimen, where two chromosomes of a single genome were lost. Various meiotic irregularities were observed. The highest incidence of meiotic abnormalities was observed in the pentaploid specimens. This was attributed to their uneven polyploid level All specimens varied from segmental alloploid to alloploid.


Bothalia ◽  
1989 ◽  
Vol 19 (1) ◽  
pp. 125-132 ◽  
Author(s):  
J. J. Spies ◽  
E. J. L. Saayman ◽  
S. P. Voges ◽  
G. Davidse

Cytogenetic studies of 53 specimens of 14 species of the genus  Ehrharta Thunb. confirmed a basic chromosome number of 12 for the genus. Chromosome numbers for 13 species are described for the first time. The highest ploidy level yet observed in the genus (2n = lOx = 120) is reported for E. villosa var.  villosa. B chromosomes were observed in several specimens of four different species.


Bothalia ◽  
1994 ◽  
Vol 24 (2) ◽  
pp. 241-246 ◽  
Author(s):  
J. J. Spies ◽  
T. H. Troskie ◽  
E. Van der Vyver ◽  
S. M. C Van Wyk

Representative specimens of various species of the genera  Andropogon L.,  Cymbopogon Spreng.,  Elionurus Kunth ex Willd.,  Hyparrhenia Foum. and  Hyperthelia Clayton were cytogenetically studied. All specimens had a secondary basic chromosome number of ten. Polyploidy, either as alloploidy or segmental alloploidy. was frequent. The taxa studied represent mature polyploid complexes.  


1976 ◽  
Vol 24 (2) ◽  
pp. 237 ◽  
Author(s):  
D.A. Stewart ◽  
BA Barlow

A basic chromosome number of x = 27 is constant in 14 species of Ptilotus examined. This basic number may be polyploid in derivation, with the entire genus having developed at a stabilized hexaploid level from an ancestral stock with x = 9. Only one species, P. obovatus (Gaud.) F. Muell., shows cytotypic variation, with diploid and tetraploid forms having n = 27 and n = 54 respectively. The tetraploid biotype is relatively uniform morphologically and is distributed throughout the species area studied. Diploid biotypes are more variable morphologically and of more local occurrence, and may be isolated relicts. The adaptive tetraploid biotype has probably been a more successful recolonizer of the arid zone following Recent arid maxima. Gynodioecism is of general occurrence in both diploid and tetraploid races of P. obovatus, and is probably effective as an outcrossing mechanism in this self-compatible species. The sex ratio varies between populations, and may be in dynamic equilibrium with the genetic effects of polyploidy and the selective effects of habitat stability.


Sign in / Sign up

Export Citation Format

Share Document