Development of an ineffective pea root nodule: morphogenesis, fine structure, and cytokinin biosynthesis

1977 ◽  
Vol 55 (14) ◽  
pp. 1891-1907 ◽  
Author(s):  
William Newcomb ◽  
Kunihiko Syono ◽  
John G. Torrey

Roots of the garden pea Pisam sativum L. cv. Little Marvel inoculated with Rhizobium leguminosarum strain 1019 produce small white nodules which are ineffective in fixing atmospheric nitrogen. Analyses of cytokinin contents of the nodules at different ages using extraction, purification, and thin-layer chromatographic separation showed that the cytokinins zeatin and zeatin riboside and isopentenyladenine and its riboside were present in greatest amounts early in nodule development and decreased thereafter. A new unidentified cytokinin was present in older nodules. The early stages of the infection process in the ineffective nodules were similar to those observed in effective nodules. However, bacteria released from the bacterial thread via an unwalled droplet were not always surrounded by a host membrane. In later stages of nodule development many infected cells contained rhizobia with no enclosing membranes so that the bacteria were free within the host cytoplasm. Such cells showed very low frequencies of mitochondria, of polyribosomes, and endoplasmic reticulum. Thus, the biosynthetic capacity of the cells appeared to be impaired and membrane synthesis defective. The failure of the nodules to develop nitrogenase activity is probably related to the failure of membrane formation around the bacteria. Abnormalities in amyloplast formation were also noted, as well as structural differences in the nodule, including a higher proportion of uninfected cells and earlier cessation of mitotic activity in the nodule meristem than occurs in effective nodules of pea. Transfer cells were observed in the pericycle in both effective and ineffective nodules.

Author(s):  
Lu Tian ◽  
Leru Liu ◽  
Shaoming Xu ◽  
Rufang Deng ◽  
Pingzhi Wu ◽  
...  

Abstract Polyol transporters (PLTs) have been functionally characterized in yeast and Xenopus laevis oocytes as H +-symporters with broad substrate specificity, but little is known about their physiological roles in planta. To extend this knowledge we investigated roles of LjPLT11 in Lotus japonicus-Mesorhizobium symbiosis. Functional analyses of the LjPLT11 in yeast characterized this protein as an energy-independent transporter of xylitol, two O-methyl inositols, xylose and galactose. We also showed that LjPLT11 is located on peribacteroid membranes (PBMs) and functions as a facilitative transporter of D-pinitol within infected cells of L. japonicus nodules. Knockdown of LjPLT11 (LjPLT11i) in L. japonicus accelerated plant growth under nitrogen-sufficiency, but resulted in abnormal bacteroids with corresponding reductions in nitrogenase activity in nodules and plant growth in the nitrogen-fixing symbiosis. LjPLT11i nodules had higher osmotic pressure in cytosol and fewer in bacteroids than wildtype nodules both three and four weeks after inoculation of M. loti. Levels and distributions of reactive oxygen species were also perturbed in infected cells of four-week-old nodules in LjPLT11i plants. The results indicate that LjPLT11 plays a key role in adjustment of levels of its substrate pinitol, and thus maintenance of osmotic balance in infected cells and PBM stability during nodule development.


2001 ◽  
Vol 79 (7) ◽  
pp. 767-776 ◽  
Author(s):  
A L Davidson ◽  
W Newcomb

Various microorganisms that form symbiotic associations with plant roots alter the cytoskeleton of host cells. The objective of this study was to determine the organization of actin microfilaments in developing Pisum sativum L. (pea) root nodule cells at various stages after infection by Rhizobium leguminosarum bv. viciae. Fluorescently labelled microfilaments in uninfected pea root nodule cells occur in association with the nucleus, along cytoplasmic strands, and as long microfilament bundles randomly organized in the cortex of the cell. These actin arrays are also present in recently infected cells that have been invaded by an infection thread and contain a small number of bacteroids. In addition, the recently infected cells contain diffuse cytoplasmic actin, long actin microfilament bundles near the vacuole, and a nuclear-associated network of microfilament bundles. In older infected cells, the predominant array is a network of cytoplasmic microfilaments that are wavy and extend in multiple directions within the cell; the network is equally abundant in all regions of the cytoplasm and may interact with the bacteroids and organelles. Thus, actin microfilaments reorganize during the pea root nodule infection process to form distinct arrays whose organization depends on the stage of infection.Key words: nodule, actin microfilaments, Rhizobium, pea, symbiosis.


1983 ◽  
Vol 61 (11) ◽  
pp. 2898-2909 ◽  
Author(s):  
Kathryn A. VandenBosch ◽  
John G. Torrey

Suspensions of crushed root nodules of Myrica gale containing the actinomycete Frankia induced nodule formation on roots of seedlings of M. gale and Comptonia peregrina grown in nutrient water culture. Nodules formed on M. gale were normal in structure and exhibited nitrogenase activity (measured as acetylene reduction) and provided the necessary nitrogen for seedling development. These effective nodules showed typical external and internal structure with the endophyte developing both vesicles and sporangia within cortical cells of the host tissue. Small nodules formed on C. peregrina representing the primary nodule stage. They lacked nitrogenase activity and were termed ineffective. Vesicles failed to develop within these ineffective nodules. However, sporangia were formed in infected cells and within intercellular spaces of the nodule cortical tissue. In addition, prominent amyloplasts occurred in infected cells of the ineffective nodules, a feature lacking in effective nodules. Exogenously supplied combined nitrogen increased seedling growth but did not improve nodule development or endophyte morphogenesis in the ineffective nodules.


2016 ◽  
Author(s):  
Nir Drayman ◽  
Omer Karin ◽  
Avi Mayo ◽  
Tamar Danon ◽  
Lev Shapira ◽  
...  

AbstractViral infection is usually studied at the level of cell populations, averaging over hundreds of thousands of individual cells. Moreover, measurements are typically done by analyzing a few time points along the infection process. While informative, such measurements are limited in addressing how cell variability affects infection outcome. Here we employ dynamic proteomics to study virus-host interactions, using the human pathogen Herpes Simplex virus 1 as a model. We tracked >50,000 individual cells as they respond to HSV1 infection, allowing us to model infection kinetics and link infection outcome (productive or not) with the cell state at the time of initial infection. We find that single cells differ in their preexisting susceptibility to HSV1, and that this is partially mediated by their cell-cycle position. We also identify specific changes in protein levels and localization in infected cells, attesting to the power of the dynamic proteomics approach for studying virus-host interactions.


2019 ◽  
Author(s):  
Ila S. Anand ◽  
Won Young Choi ◽  
Ralph R. Isberg

SummaryLegionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonize vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilize the replication vacuole, EEA1 and Rab11FIP1 showed enhanced colocalization with the vacuole surrounding the sdhA mutant compared with the WT vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant colocalization. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilize vacuole integrity during infection.


2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


1995 ◽  
Vol 50 (7-8) ◽  
pp. 543-551
Author(s):  
Bernhard Epping ◽  
Alexander P. Hansen ◽  
Peter Martin

Abstract Nodules of Rhizobium leguminosarum bv. phaseoli in symbiosis with Phaseolus vulgaris were compared with regard to their nitrogenase activity and activities of enzymes involved in the removal of O2·- and H2O2 as well as total ascorbate content. Activities of catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), and total ascorbate content were consist­ently higher in nodules inhabited by bacterial strains with higher nitrogenase activity. Values for superoxide dismutase (EC 1.15.11), and guaiacol peroxidase activity did not differ for the bacterial strains compared. On the other hand, when different plant cultivars were inoculated with the same bacterial strain, high nitrogenase activity did not correlate with a higher activ­ity of the oxygen scavenging enzyms or a higher content of total ascorbate. In this case, values for guaiacol peroxidase activity were greatly enhanced in nodules with lower nitrogen­ ase activity. This may be part of a hypersensitive reaction of the plant cultivar against the bacterial symbiotic partner. Inhibition of catalase activity in the nodules by addition of triazole to the nutrient solution did not alter nitrogenase activity within the first nine hours after addition. It can be concluded that the activity of catalase, ascorbate peroxidase, and superoxide dismutase is not generally coupled to nitrogenase activity in root nodules of P. vulgaris.


2019 ◽  
Vol 78 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Abdul Razaque Memon ◽  
Christiane Katja Schwager ◽  
Karsten Niehaus

Abstract In this study we used Medicago truncatula, to identify and analyze the expression of small GTP-binding proteins (Arf1, Arl1, Sar1, Rabs, Rop/Rac) and their interacting partners in the infection process in the roots and nodules. A real-time polymerase chain reaction analysis was carried out and our results showed that Arf1 (AtArfB1c-like), MtSar1, AtRabA1e-like, AtRabC1-like, MsRab11-like and AtRop7-like genes were highly expressed in the nodules of rhizobium inoculated plants compared to the non-inoculated ones. On the contrary, AtRabA3 like, AtRab5c and MsRac1-like genes were highly expressed in non-infected nitrogen supplied roots of M. truncatula. Other Rab genes (AtRabA4a, AtRabA4c and AtRabG3a-like genes) were nearly equally expressed in both treatments. Interestingly, RbohB (a respiratory burst NADPH oxidase homologue) was more highly expressed in rhizobium infected than in non-infected roots and nodules. Our data show a differential expression pattern of small GTP-binding proteins in roots and nodules of the plants. This study demonstrates an important role of small GTP-binding proteins in symbiosome biogenesis and root nodule development in legumes.


Sign in / Sign up

Export Citation Format

Share Document